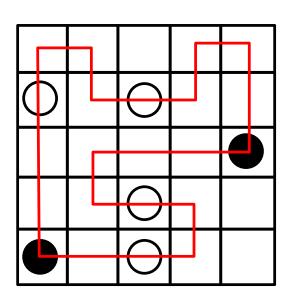
整数計画法を用いた Pearl Puzzleの効率的な解法

2016年3月7日 第11回組合せゲーム・パズル研究集会

大阪電気通信大学 〇貴宮 京一 鈴木 裕章 上嶋 章宏

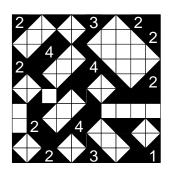
目次

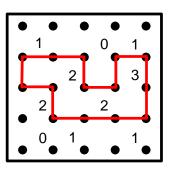
- 研究背景
 - 整数計画法や先行研究
- Pearl Puzzle
 - ルールと定義
- 定式化
 - ・2つの既存手法と提案手法
- 評価
 - ・計測結果と考察
- ・まとめと今後の課題



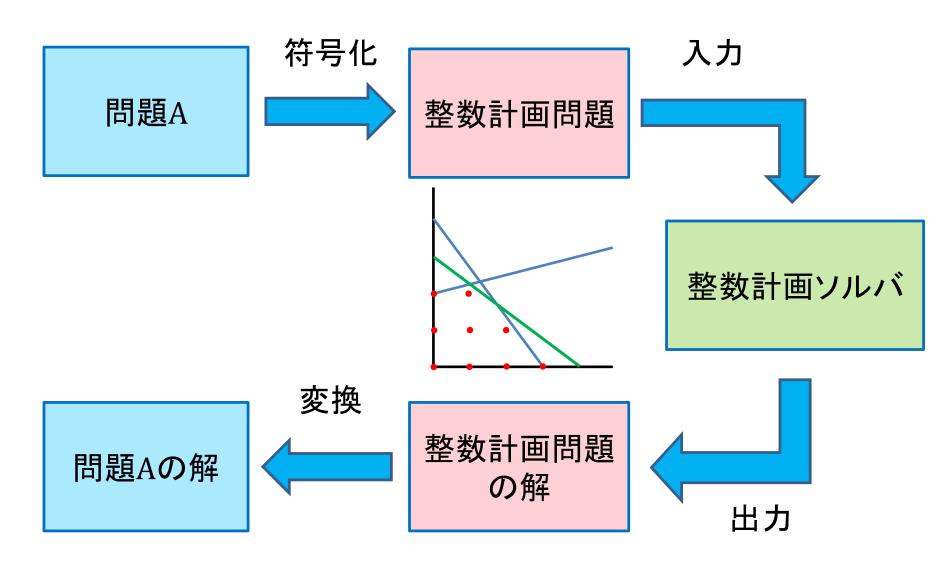
研究背景: 汎用ソルバの適用

- ・ 幅広い分野で汎用ソルバを使用した解法
- ・汎用ソルバ利用の利点・欠点
 - ▶ 問題記述を与えることで、各問題に適用可能
 - ▶ 問題依存のアルゴリズムに比べ、細かなプログラム制御に不向き
 - > 多くの研究成果が利用可能で、費用対効果が高い
 - 定式化の工夫が計算時間に影響を与える可能性
- ・汎用ソルバを用いたパズルの高速解法 シャカシャカ [岡本, 2013] Slitherlink [石濱, 久野, 2013]

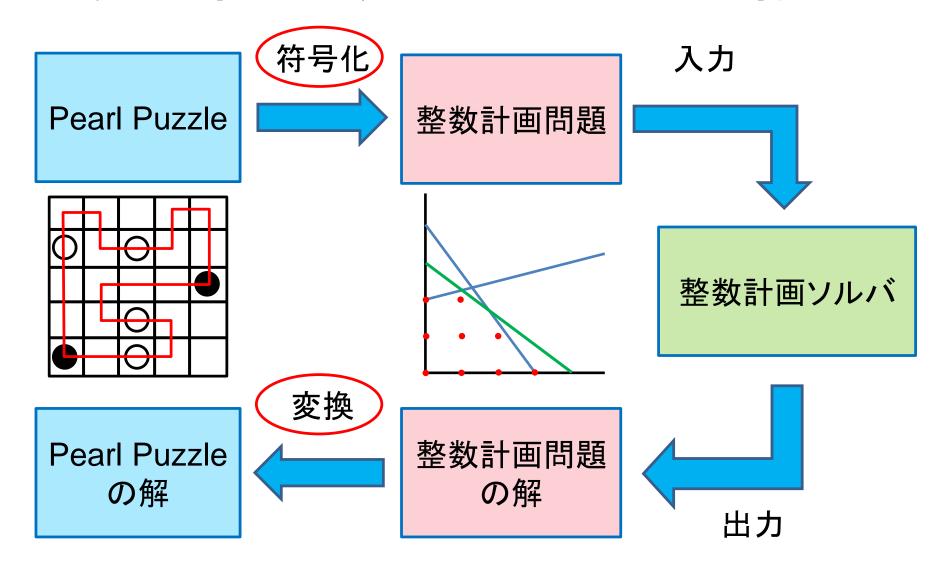




研究背景:整数計画法を用いた解法



研究背景:整数計画法を用いた解法



研究背景: Pearl Puzzleの計算複雑さ

Pearl PuzzleのNP完全性

[Erich Friedman, 2002]

Pearl PuzzleのASP完全性

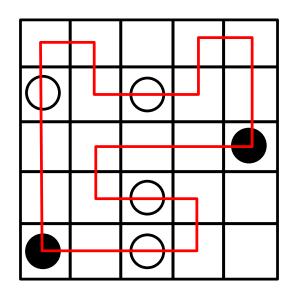
[浴本, 2016] New!

・各点の次数が3以下の平面グラフでのハミルトン閉路問題から還元

Pearl Puzzle

NP完全

問題の効率的な解法が困難



ASP完全

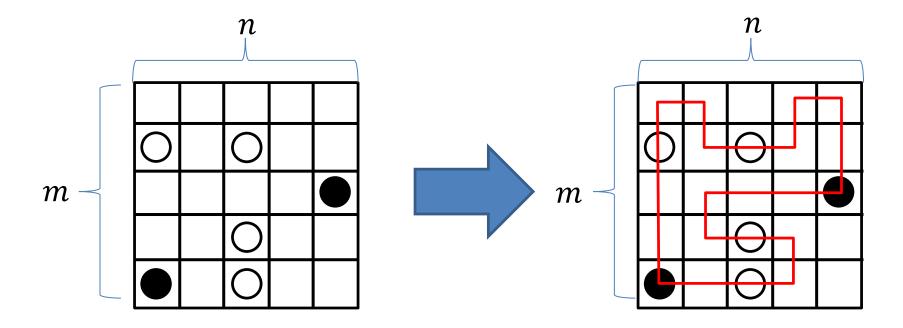
想定解以外の解の 効率的な発見が 困難

Pearl Puzzle (ましゅ)

• 株式会社ニコリ提供のペンシルパズル

入力: ○と●が複数配置されたm×nの盤面

・出力:ルールを満たしすべての○と●上を通る1つの輪

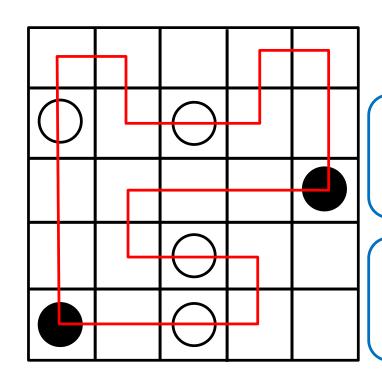


Pearl Puzzleのルール

交差, 枝分かれ, 複数の輪は×

〇上は直進

両隣のマスで片方は 曲がる



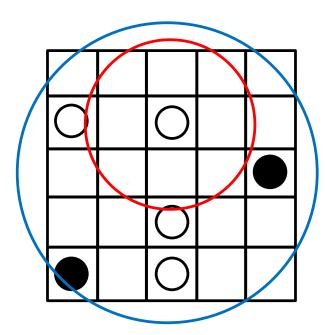
●上は曲がる

両隣のマスは直進

Pearl Puzzleの定式化

- ・各ルールを定式化する
- 規模が大きくなる「複数輪の禁止」制約に注目

〇のルールに 必要な情報



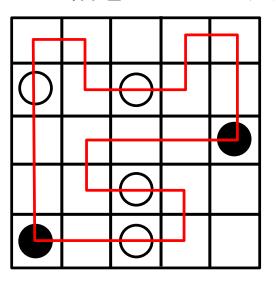
「複数輪の禁止」に 必要な情報

Pearl Puzzleの定式化

Slitherlinkの高速解法 [石濱, 久野, 2013]

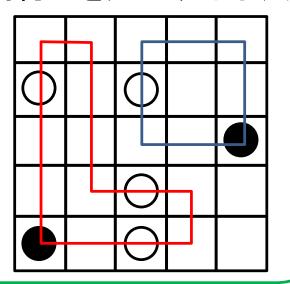
2つの既存手法

番号付により 1つの輪を与える手法

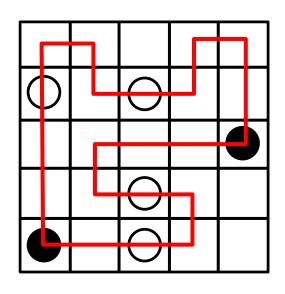


提案手法

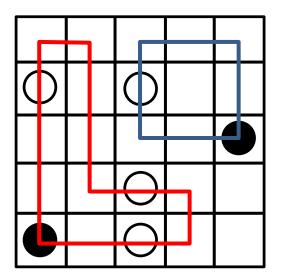
暫定解の情報から 制約式を追加する手法



Pearl Puzzleの定式化:番号付



2	3	0	7	8
1	4	5	6	9
22	13	12	11	10
21	14	15	16	0
20	19	18	17	0



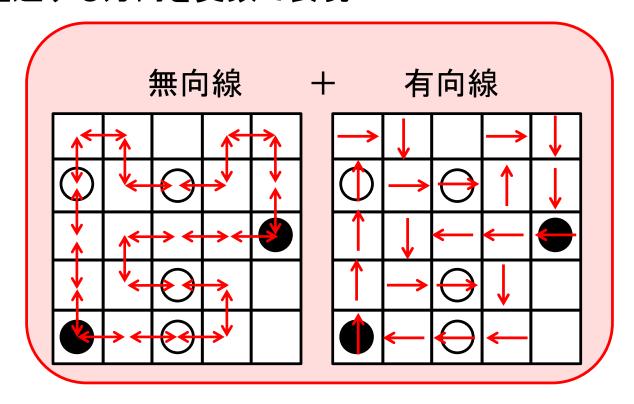
2	3	15	16	1 7
_	4	22	0	18
14	5	21	20	19
13	6	7	8	0
12	11	10	9	0

出発点から昇順に なるように構成

制約に反している

Pearl Puzzleの定式化:番号付

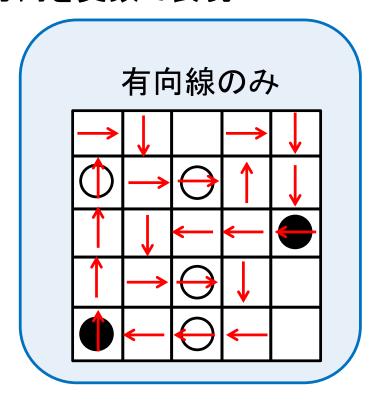
- ・2つの既存手法を参考に構築
- ・線が通過する方向を変数で表現



http://www21.tok2.com/home/kainaga11/glpkPearl/GLPKpearl.htm

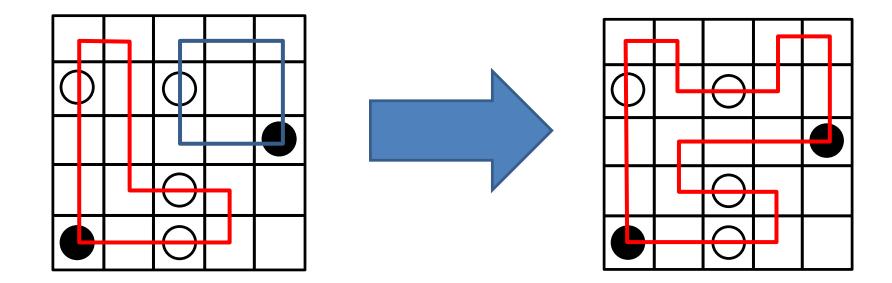
Pearl Puzzleの定式化:番号付

- ・2つの既存手法を参考に構築
- ・線が通過する方向を変数で表現



提案手法

- 暫定解から制約式を追加する手法
- 複数の輪の解から同じ輪を生成しない制約を追加
- ・輪が1つになるまで繰り返す

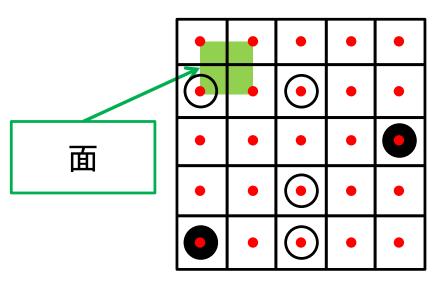


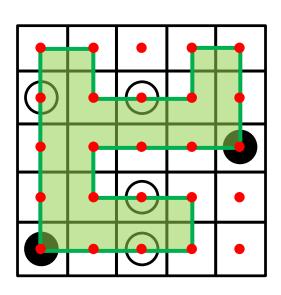
提案手法

Slitherlinkの先行研究に基づき構築

[石濱, 久野, 2013]

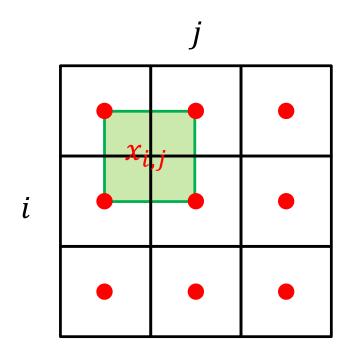
- ・線ではなく面に注目
- 面が輪の内側か外側かを定める

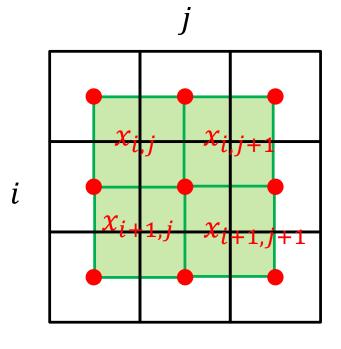




提案手法:変数

- ・元盤面のマスの左上面を x_{ij}
- $x_{i,j} \in \{0,1\}$

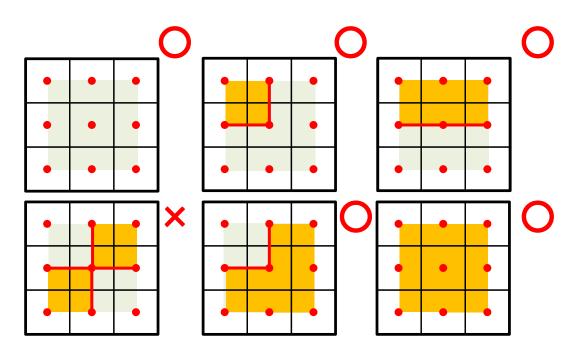


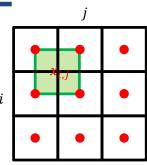


提案手法: 枝分かれ・交差の禁止

- ・点を共有する4面の組合せは6つ
- ・線が交差する組合せは除外

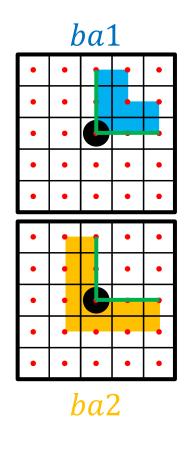
$$\begin{aligned} x_{i,j} + \left(1 - x_{i+1,j}\right) + \left(1 - x_{i,j+1}\right) + x_{i+1,j+1} &\leq 3 \\ x_{i,j} + \left(1 - x_{i+1,j}\right) + \left(1 - x_{i,j+1}\right) + x_{i+1,j+1} &\geq 1 \end{aligned}$$



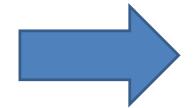


提案手法:●のルール

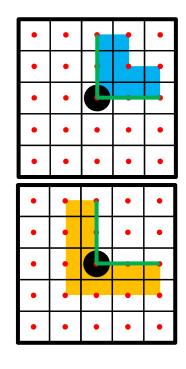
• 線の引き方に対応する面が内側かを選ぶ変数



ba1が選ばれる



ba2が選ばれる



*ba*1の面は内側

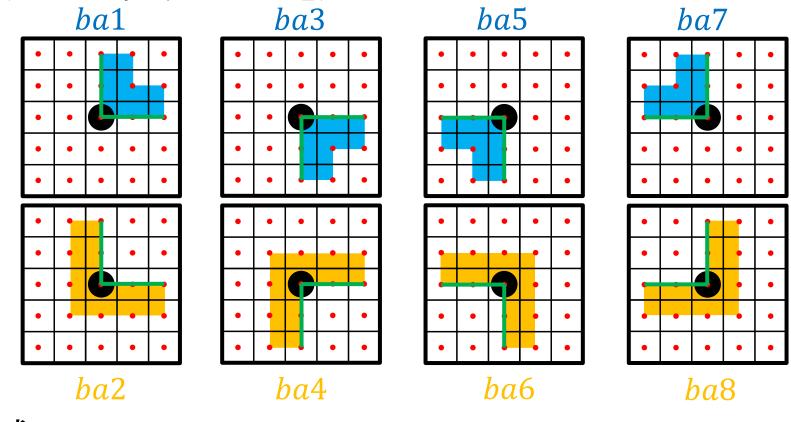
ba2の面は外側

ba1の面は外側

ba2の面は内側

提案手法:●のルール

- 線の引き方に対応する面が内側かを選ぶ変数
- ・すべての変数から1つを選ぶ



制約式 ba1 + ba2 + ba3 + ba4 + ba5 + ba6 + ba7 + ba8 = 1

提案手法:●のルール

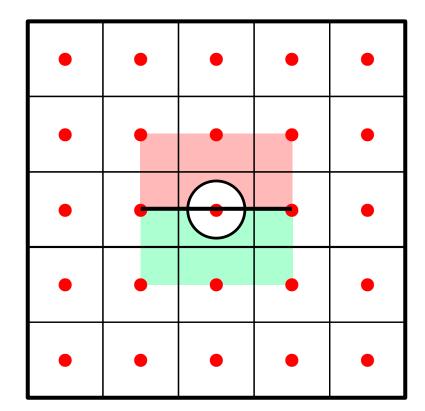
・選ばれた変数の面は内側、反対側の変数の面は外側

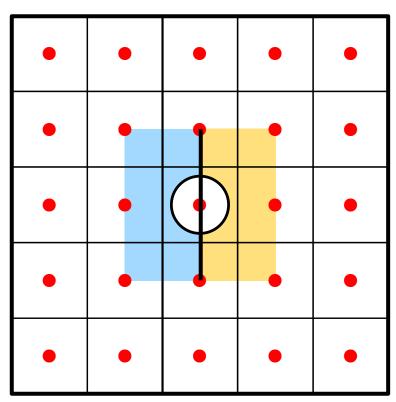
$$3 \times ba1 - x_{i-1,j+1} - x_{i,j+1} - x_{i,j+2} \le 0$$
 $ba1 = 1$: 青の3マスを内側にする
$$3 \times ba2 + x_{i-1,j+1} + x_{i,j+1} + x_{i,j+2} \le 3$$
 $ba2 = 1$: 青の3マスを外側にする

$$5 \times ba2 - x_{i,j} - x_{i-1,j} - x_{i+1,j} - x_{i+1,j+1} - x_{i+1,j+2} \le 0$$

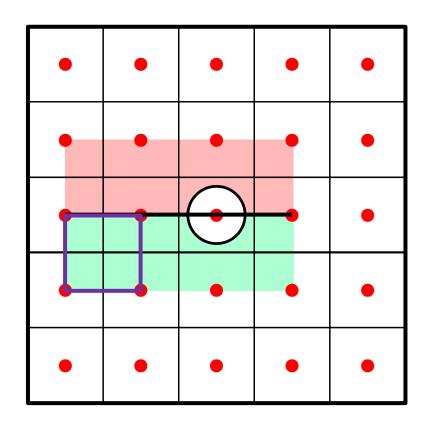
$$5 \times ba1 + x_{i,j} + x_{i-1,j} + x_{i+1,j} + x_{i+1,j+1} + x_{i+1,j+2} \le 5$$

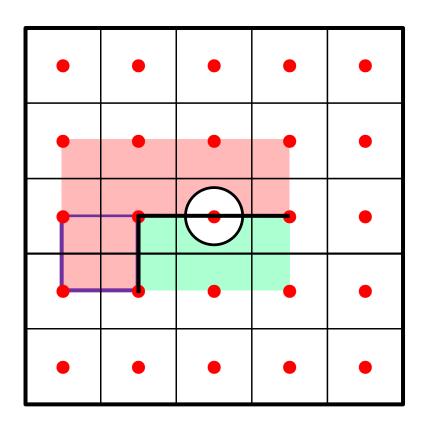
●と同じく内側になる面を決める

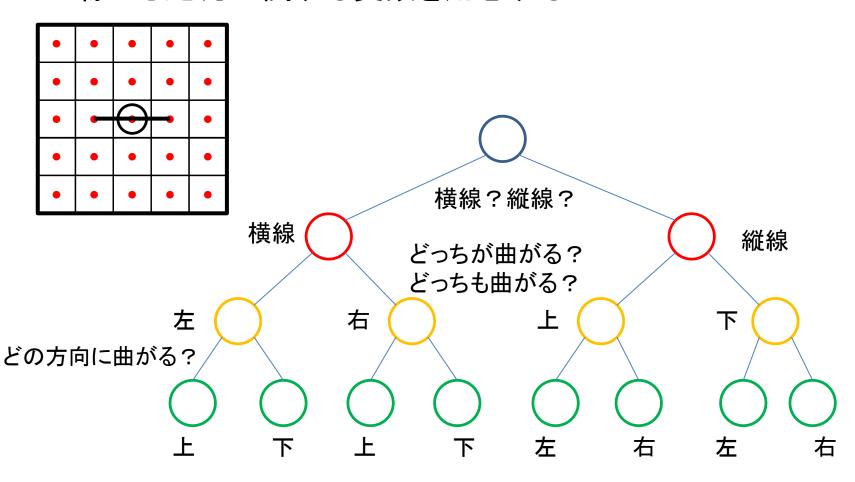


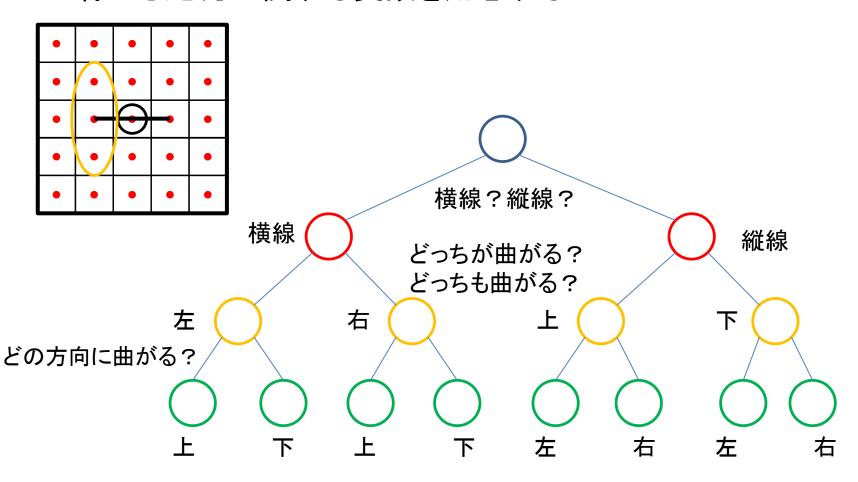


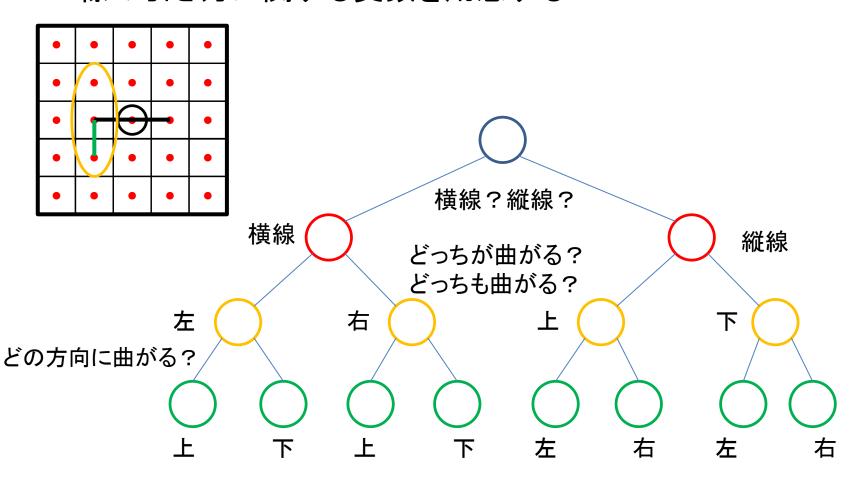
- ●と同じく内側になる面を決める
- 線の引き方によって変わる面がある

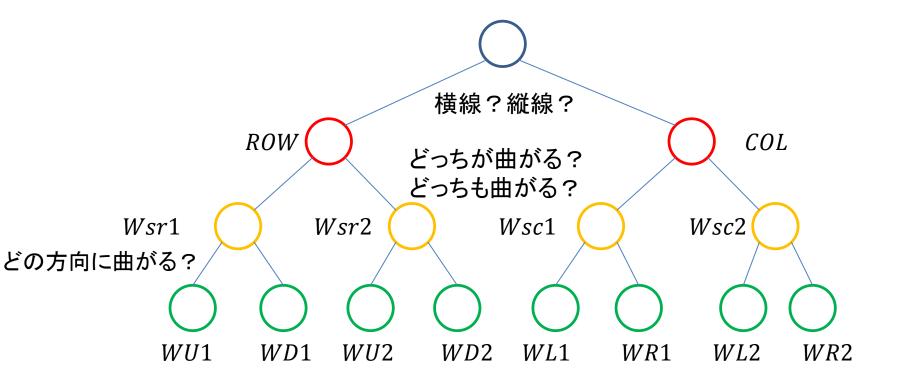












横線か縦線か ROW + COL = 1

横線の面を選択 -ROW + w1 + w2 = 0

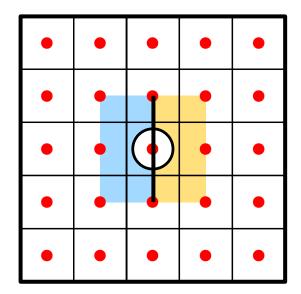
 内側になる面を選択

$$w1 + w2 + w3 + w4 = 1$$

縦線の面を選択

$$-COL + w3 + w4 = 0$$

w3 w4



$$2 \times w1 - x_{i,j} - x_{i,j+1} \le 0$$
$$2 \times w2 + x_{i,j} + x_{i,j+1} \le 2$$

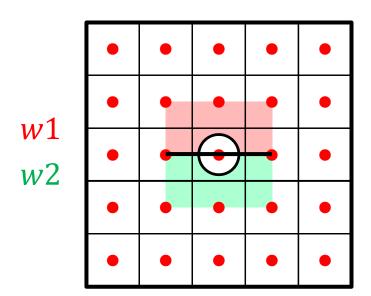
$$2 \times w2 - x_{i+1,j} - x_{i+1,j+1} \le 0$$

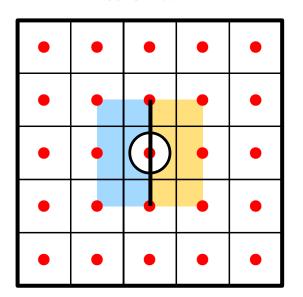
$$2 \times w1 + x_{i+1,j} + x_{i+1,j+1} \le 2$$

$$2 \times w3 - x_{i,j} - x_{i+1,j} \le 0$$
$$2 \times w4 + x_{i,j} + x_{i+1,j} \le 2$$

$$2 \times w4 - x_{i,j+1} - x_{i+1,j+1} \le 0$$
$$2 \times w3 + x_{i,j+1} + x_{i+1,j+1} \le 2$$

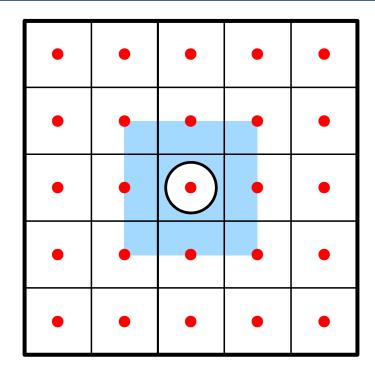
w3 w4





白丸の周り4面の内2面は内側

$$x_{i,j} + x_{i,j+1} + x_{i+1,j} + x_{i+1,j+1} = 2$$

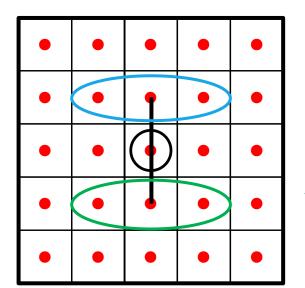


横線, 縦線それぞれどの箇所が曲がるか

$$-ROW + Wsr1 + Wsr2 \ge 0$$

$$-COL + Wsc1 + Wsc2 \ge 0$$

Wsr2



Wsc1

Wsc2

横線、縦線それぞれどの箇所が曲がるか

$$-ROW + Wsr1 + Wsr2 \ge 0$$

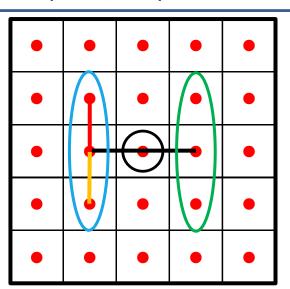
$$-COL + Wsc1 + Wsc2 \ge 0$$

線がどの方向に曲がるか

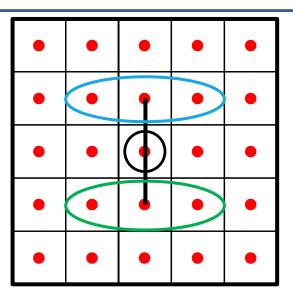
$$-Wsr1 + WU1 + WD1 = 0$$
 $-Wsc1 + WL1 + WR1 = 0$

$$-Wsr2 + WU2 + WD2 = 0$$
 $-Wsc2 + WL2 + WR2 = 0$

WU1
Wsr1
WD1



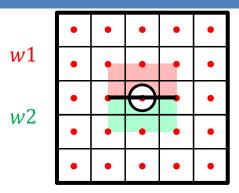
Wsr2



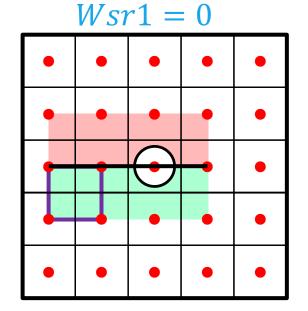
Wsc1

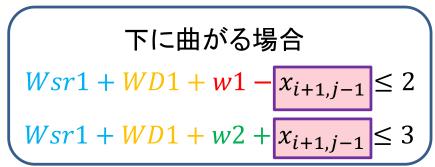
Wsc2

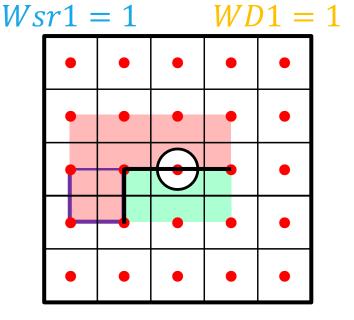
線の引き方によって変わる面がある



曲がらない場合 $-Wsr1 + w2 - x_{i+1,j-1} \le 0$ $-Wsr1 + w1 + x_{i+1,j-1} \le 1$







提案手法:複数輪の禁止

輪を構成する内側と外側の面を用いて制約式を構成

の集合:Lout

輪を構成する 面の総数

	0	0	
0	1	1	0
0	1	1	0
	0	0	

の集合: L_{in}

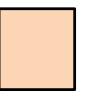
輪を構成する 面の総数-1

$$\sum_{(i,j)\in L_{in}} x_{i,j} + \sum_{(i,j)\in L_{out}} (1-x_{i,j}) \le |L_{in}| + |L_{out}| - 1$$

$$\leq |L_{in}| + |L_{out}| - 1$$

提案手法:複数輪の禁止

輪を構成する内側と外側の面を用いて制約式を構成



の集合:Lout

輪を構成する 面の総数

	1	1	
1	0	0	1
1	0	0	1
	1	1	

の集合:Lin

輪を構成する 面の総数-1

$$\sum_{(i,j)\in L_{in}} (1-x_{i,j}) + \sum_{(i,j)\in L_{out}} x_{i,j} \le |L_{in}| + |L_{out}| - 1$$

$$\leq |L_{in}| + |L_{out}| - 1$$

実験的評価(1)

- 通常,人手で解かれる規模の問題例を効率的に解けるか?
 - ・2つの既存手法と提案手法の比較

• 評価方法

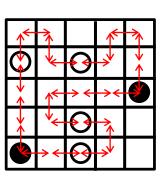
- ・(株)ニコリの問題例を対象
- 10×10盤面を3問, 10×18盤面を3問の計6問
- 1時間を上限に計測し、3回平均で評価

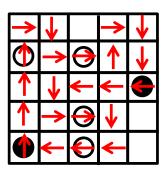
• 実験環境

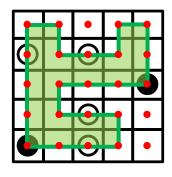
- CPU: Intel® Core™ i5-2540M CPU@ 2.60 GHz 2.60 GHz
- メモリ: 4.00 GB
- OS: Microsoft Windows 7 Professional Edition
- Solver: GLPK version 4.34 (CPLEX LP形式で記述)

実験的評価(2): 目的関数の設定

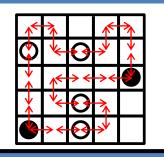
- ◆無向線+有向線
- 線の総数を最小化
- 既存手法と同様の設定
- 有向線のみ
- 番号の総和を最小化
- 最小の閉路にするため
- ·提案手法
 - ・内側となる面の総数を最大化
 - Slitherlinkの先行研究と同様の設定

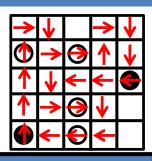






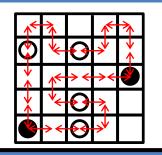
評価: 既存手法

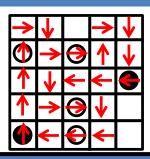




No サイズ	無向線+有向線		有向線				
	714	変数	制約式	時間(s)	変数	制約式	時間(s)
1	10 × 10	2,161	2,246	0.911	701	1,366	10.446
2	10 × 10	2,161	2,182	2.365	701	1,257	_
3	10 × 10	2,161	2,173	6.312	701	1,233	_
4	10 × 18	3,601	3,928	0.804	1,179	2,433	_
5	10 × 18	3,601	3,816	2.617	1,179	2,269	_
6	10 × 18	3,601	3,790	_	1,179	2,185	_

評価: 既存手法

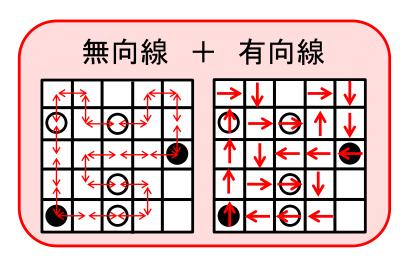


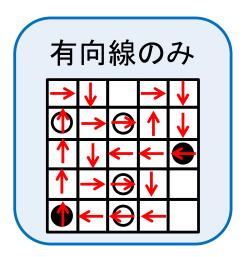


No サイズ	4 / ブ	無向線+有向線			有向線		
	714	変数	制約式	時間(s)	変数	制約式	時間(s)
1	10 × 10	2,161	2,246	0.911	701	1,366	10.446
2	10 × 10	2,161	2,182	2.365	701	1,257	_
3	10 × 10	2,161	2,173	6.312	701	1,233	_
4	10 × 18	3,601	3,928	0.804	1,179	2,433	_
5	10 × 18	3,601	3,816	2.617	1,179	2,269	_
6	10 × 18	3,601	3,790		1,179	2,185	_

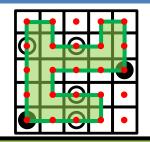
実験結果の考察(1): 既存手法の比較

- •「無向線+有向線」符号化法
 - 10×10の問題例であれば、効率的に解ける
 - 10×18サイズでは、現実的な時間で解けない問題例も散見
- ・「有向線のみ」符号化法
 - 10×10以上の問題例では、ほぼ効率的に解けない
 - 複雑な意味を持たせた変数による、少ない変数数での定式化
 - ・制約式数は比較的少ないが、"緩い"定式化のため非効率





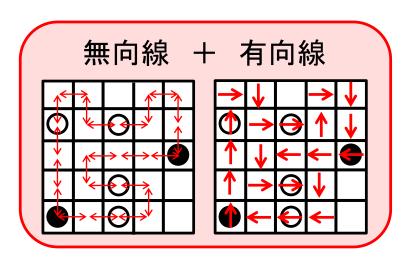
評価:提案手法



No	サイズ	提案手法						
INO		変数	制約式	時間(s)	反復数			
1	10 × 10	683	1,754	0.650	0			
2	10 × 10	497	1,244	0.923	1			
3	10 × 10	481	1,210	2.652	2			
4	10 × 18	1,183	3,049	0.862	0			
5	10 × 18	871	2,182	2.847	0			
6	10 × 18	815	2,063	26.624	3			

実験結果の考察(2): 既存手法と提案手法

- 提案手法の評価
 - 「無向線+有向線」符号化法と同程度に優秀
 - 暫定解から制約式を追加する手法の有用性を確認
- ・「無向線+有向線」符号化との比較
 - ・ (制限時間内に)一方のみで解ける問題例が存在
 - ・提案手法の方が、同規模の問題例を広範囲にカバー(?)
 - ・変数数および制約式数を抑えた定式化になっている





まとめと今後の課題

- ・まとめ
 - ➤ Pearl Puzzleを整数計画問題として記述
 - ✓ 既存手法の修正およびCPLEX LP形式への変換
 - ✓ Slitherlinkでのアイデア[石濱, 久野, 2013]を適用
 - > 実問題に対する実験的評価
 - ✓ 10×10サイズ程度であれば充分高速に解ける
 - ✓ 10×18サイズ規模では手に負えない問題例もある
 - √「無向線+有向線」符号化が比較的優秀(?)

・今後の課題

- > 提案手法で反復回数が多い問題例への対応
- > 目的関数の設定に基づく計算効率の違いを検証