一般化川渡り問題について

伊藤大雄(京都大学)
Joint work with
Stefan Langerman (Univ. Libre de Bruxelles)
吉田悠一(京都大学)

3人の嫉妬深い男とその妹の問題

- [Alcuin of York, 「青年達を鍛えるための諸問題」より]
- 3人の男がそれぞれ一人ずつ未婚の妹を連れて川にさしかかった。
- 二人乗りのボートが一艘あり、それを使って6人が向こう岸に渡りたい。
- ただし、男は警戒心が強く、自分の妹が、自分の居ない所で他の男と同席することは我慢できない。
- 上手く渡る方法を示せ。

回答

狼と山羊とキャベツの問題

- [Alcuin of York,「青年達を鍛えるための諸問題」より]
- 農夫が狼と山羊とキャベツ(の山)を持って川にさしかかった。
- ボートが一艘あり、それを使って向こう岸に渡りたい。
- ボートには、農夫士(狼か山羊かキャベツのどれか)しか一度に載せられない。
- 農夫が居ないと「狼は山羊を食べ」「山羊はキャベツを食べ」てしまう。
- 上手く渡る方法を示せ。

• このような問題は「川渡り問題 (River Crossing Problems)」と呼ばれ、多くのバリ エーションがある。

We introduce: Generalized River Crossing Problem

PROBLEM: RIVER CROSSING

- INSTANCE:
 - − A set of drivers D, A set of customers C, Forbidden sets \mathcal{F}_L , \mathcal{F}_R , $\mathcal{F}_B \subseteq 2^{D \cup C}$,
 - The size of the boat b∈ Z^+ , The bound of the # of transportations T∈ Z^+ U {∞}.
- QUESTION: Is there a way to transport all of the drivers and customers from the left bank to the right bank of a river using a boat under the following restrictions?
- RESTRICTIONS:
 - 1. Initially all drivers, all customers, and the boat are on the left bank.
 - 2. The capacity of the boat is b.
 - 3. Only drivers can operate the boat.
 - 4. It is forbidden to transport exactly the members of a forbidden set in $\mathcal{F}_{\rm B}$ in the boat.
 - 5. It is forbidden to leave exactly the members of a forbidden set in \mathcal{F}_L (resp., \mathcal{F}_R) on the left bank (resp., the right bank).
 - 6. The number of transportations is at most *T.*

Ex.) the Wolf-Goat-Cabbage Problem

- D={Man}, C={Wolf, Goat, Cabbage}
- $\mathcal{F}_L = \mathcal{F}_R = \{\{\text{Wolf, Goat}\}, \{\text{Goat, Cabbage}\},\}$
- {Wolf, Goat, Cabbage}},
- $\mathcal{F}_{B} = \phi$,
- $b = 2, T = \infty$.

Note

- $T=\infty \Leftrightarrow T=2^{|P|+1}$ (P = DUC).
- In this paper, we assume that every driver is allowed to operate the boat alone (Independent-driver model).
- Another formulation by using ALLOWED SETS: This can be reduced to a shortest path problem and can be solved in poly. time.

Past Work

- The allowed set formulation and shortest path approaches [B.R. Schwartz 61], [R. Bellman 62].
- Unique driver, forbidden pairs (represented by a graph G), forbidden pairs cannot be in the same place without supervision from the unique driver; How large b should be? -> Alcuin # of G [P. Csorba, et al. ESA07] [M. Lampis, V. Mitsou FUN07].
- Our formulation is far more flexible.

Our Results

- Theorem 1: RIVER CROSSING is NP-hard even if $\mathcal{F}_L = \mathcal{F}_R = \varphi$ and b=3.
 - Proof: reduced from 3D matching.
- Theorem 2: If $\mathcal{F}_L = \mathcal{F}_R = \varphi$ and b=2, then (independent-driver model) RIVER CROSSING can be solved in polynomial time.
 - Proof: easy observations.
- Theorem 3. If |D|=1, b=2, T=∞, and F_B=φ, then RIVER CROSSING can be solved in polynomial time.
 - Proof: Interesting a little. This may extended to wide subclasses of RIVER CROSSING even for b>2.

For T=∞ (reachability prob.)

• $H_n=(V_n,E_n)$: the n-dimensional hypercube.

PROBLEM: SUB-HYPERCUBE CONNECTIVITY:

- INSTANCE: A dimension n∈Z⁺. A set of forbidden vertices F⊆V_n.
- QUESTION: Is there a path that doesn't use any vertices in F starting from 0 = (0, . . . , 0) and destining to 1 = (1, . . . , 1)?
- Ex.) n=3, F={(0,0,1), (0,1,0), (1,0,0)}
- →Answer "No."

SUB-HYPERCUBE CONNECTIVITY

- Lemma 1: There is a polynomial time algorithm for SUB-HYPERCUBE CONNECTIVITY.
- For a graph G=(V,E), $S,T\subseteq V$,
- $E(S,T):=\{(s,t)\in E\mid s\in S, t\in T\},\$
- E(S):=E(S,V-S).
- The edge expansion of S of an n-regular graph G is

$$h(S) := \frac{|E(S)|}{n \cdot \min\{|S|, |V - S|\}}.$$

- The edge expansion of G is $h(G) := \min_{S \subseteq V} h(S)$.
- Lemma 2: $h(H_n)=1/n$. \square (Known)

$$\Gamma(S) := \left\{ t \in V - S \mid \exists s \in S \text{ s.t.}(s,t) \in E \right\}.$$

- Proof of Lemma 1: If |F|<n, clearly there is no vertex cut
 Γ(S)⊆F separating 0∈S and 1∈V-S-Γ(S), then assume |F|≥n.
- If there is such a cut Γ(S), then

$$|\Gamma(S)| \ge \frac{|E(S)|}{n} = h(S) \cdot \min\{|S|, |V - S|\} \ge \frac{\min\{|S|, |V - S|\}}{n}.$$

- Hence, if |S|>n|F| and |V-S|>n|F|, then there is no such a cut.
- Then we have the following algorithm:

Algorithm

- Step 1. Search (e.g., DFS) from 0
- If it reaches 1 then output "yes";
- else if it finds n|F|+1 vertices
- then goto Step 2;
- Step 2: Search from 1
- If it reaches 0 then output "yes";
- elseif it finds n|F|+1 vertices
- then output "no";
- end.

lacktriangle

• Lemma 1: There is a polynomial time algorithm for SUB-HYPERCUBE CONNECTIVITY.

- Theorem 3. If |D|=1, b=2, $T=\infty$, and $\mathcal{F}_B=\varphi$, then RIVER CROSSING can be solved in polynomial time.
- Proof: Obtained from Lemma 1 (detail omitted.)

Summary

- We give general formulation RIVER CROSSING.
- If there is no forbidden set on both banks (i.e., $\mathcal{F}_L = \mathcal{F}_R = \phi$),
 - NP hard for any fixed b≥3.
 - P if b≤2. (independent driver model)
- For T= ∞ , P if |D|=1, b=2, and \mathcal{F}_B = φ .
- This proof uses that the transition graph has a large expansion only! →
- We conjecture that wide subproblems of RIVER CROSSING is in P even for b≥3.