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We introduce: Generalized River Crossing Problem

PROBLEM: RIVER CROSSING

* |INSTANCE:
— A set of drivers D, A set of customers C, Forbidden sets ‘F, ‘F, FzC2PV¢,
— The size of the boat b&Z*, The bound of the # of transportations TEZ* U {oo}.

 QUESTION: Is there a way to transport all of the drivers and customers
from the left bank to the right bank of a river using a boat under the
following restrictions?

e RESTRICTIONS:

1. Initially all drivers, all customers, and the boat are on the left bank.

N

The capacity of the boat is b.

w

Only drivers can operate the boat.

B

It is forbidden to transport exactly the members of a forbidden set in ‘F; in the
boat.

5. Itis forbidden to leave exactly the members of a forbidden set in ‘F, (resp., ‘Fr)
on the left bank (resp., the right bank).

6. The number of transportations is at most T.



Ex.) the Wolf-Goat-Cabbage Problem

 D={Man}, C={Wolf, Goat, Cabbage}

* F = F:={{Wolf, Goat}, {Goat, Cabbage},
. {Wolf, Goat, Cabbage}],
* TB = ¢,

e b=2,T=o0o0,



Note

¢ T=oo & T=2IPI*1 (P =DUC).

* In this paper, we assume that every driver is allowed
to operate the boat alone (Independent-driver
model).

* Another formulation by using ALLOWED SETS: This
can be reduced to a shortest path problem and can
be solved in poly. time.
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Past Work

* The allowed set formulation and shortest path
approaches [B.R. Schwartz 61], [R. Bellman 62] .

* Unique driver, forbidden pairs (represented by a
graph G), forbidden pairs cannot be in the same
place without supervision from the unique driver;
How large b should be? -> Alcuin # of G [P. Csorba, et
al. ESAO07] [M. Lampis, V. Mitsou FUNO7].

e Qur formulation is far more flexible.



Our Results

Theorem 1: RIVER CROSSING is NP-hard even if 'f, = Fr = ¢
and b=3.

— Proof: reduced from 3D matching.
Theorem 2: If }, = '}z = ¢ and b=2, then (independent-driver
model) RIVER CROSSING can be solved in polynomial time.

— Proof: easy observations.
Theorem 3. If |D|=1, b=2, T=eo, and ‘f;=¢, then RIVER
CROSSING can be solved in polynomial time.

— Proof: Interesting a little. This may extended to wide subclasses of
RIVER CROSSING even for b>2.



For T=c< (reachability prob.)

H =(V,,E,): the n-dimensional hypercube.

PROBLEM: SUB-HYPERCUBE CONNECTIVITY:

INSTANCE: A dimension nE€Z*. A set of forbidden
verticess F& V...

QUESTION: Is there a path that doesn’t use any
vertices in F starting from 0= (0, ..., 0) and
destiningto1l=(1,...,1)?

(1,1,1)
Ex.) n=3, F={(0,0,1), (0,1,0), (1,0,0)}

= Answer “No.”
(0,0,0)



SUB-HYPERCUBE CONNECTIVITY

Lemma 1: There is a polynomial time algorithm for SUB-
HYPERCUBE CONNECTIVITY.

For a graph G=(V,E), S,T&V,

E(S,T):={(s,t) €EE | sES, tET},

E(S):=E(S,V-S).

The edge expansion of S of an n-regular graph G is
E(S)

n min{\S\, v —S\}.

h(S) :=

The edge expansion of G is A(G) :=minh(S).

SCV

Lemma 2: h(H,)=1/n. L1(Known)




I(S):={tEV - SIAsES s.t.(s.)) EE}.
Proof of Lemma 1: If |F|<n, clearly there is no vertex cut
[(S) & F separating 0 €S and 1€ V-S-(S), then assume |F|2n.

If there is such a cut I'(S), then

|E(S)| <S>\ min{|S],|V - S|} |

T(S)|= = 1(S)- min{|$], |V - S|} =

Hence, if |S|>n|F| and |V-S|>n|F|, then there is no such a
cut.

Then we have the following algorithm:



Algorithm

Step 1. Search (e.g., DFS) from O
If it reaches 1 then output “yes”;
else if it finds n|F|+1 vertices
then goto Step 2;

Step 2: Search from 1

If it reaches O then output “yes”;
elseif it finds n|F|+1 vertices
then output “no”;

end.




Lemma 1: There is a polynomial time algorithm for
SUB-HYPERCUBE CONNECTIVITY.

Theorem 3. If |[D|=1, b=2, T=eo, and ‘F;=, then
RIVER CROSSING can be solved in polynomial time.

Proof: Obtained from Lemma 1 (detail omitted.)



Summary
* We give general formulation RIVER CROSSING.

* If there is no forbidden set on both banks (i.e., ’F, =
fR =¢)/

— NP hard for any fixed b>3.
— P if b<2. (independent driver model)

* For T=oo, Pif |D|=1, b=2, and ‘F;=¢.

* This proof uses that the transition graph has a large
expansion only! -

* We conjecture that wide subproblems of RIVER
CROSSING is in P even for b>3.
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