On Complexity of Flood Filling Games on Interval Graph Classes

Hiroyuki Fukui (JAIST),

Ryuhei Uehara (JAIST),

Takeaki Uno (NII), and

Yushi Uno (Osaka Pref. University)

おまけ情報:Nobパズルコレクションの行方 exity of

2011年5月の状況

Ryuhei

Hiroyu 2012年9月29日: JAISTにパズル博物館オープン 2012年3月現在:1600個程度写真撮影終了

Takeaki Uno (NII), and Yushi Uno (Osaka Pref. University)

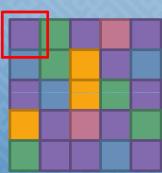
The game "Flood It!"

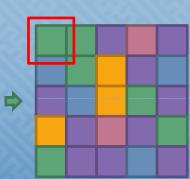
You are given a colored board…

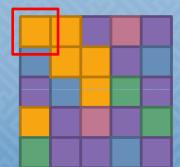


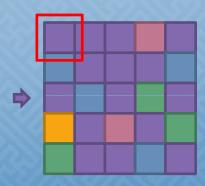
The rule is...

- you can change the color of the top-left cell
- 2. Two cells keep the same color once they colored with the same color
- 3. Game ends if all cells get the same color
- 4. Goal: minimize the number of operations.



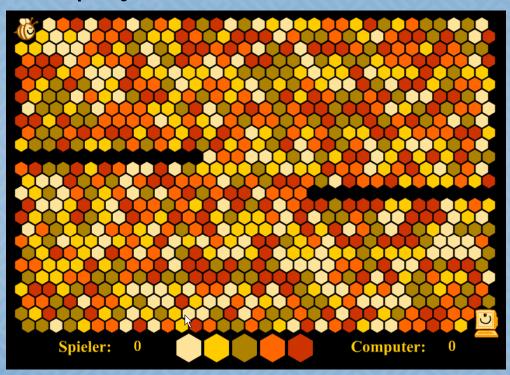






The game "Honey-Bee" game

Two player version of the Flood-It.

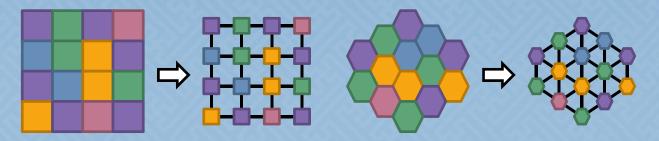


The rule is...

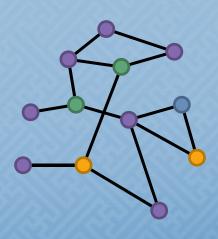
- human can change the color of the top-left cell (except comp's color)
- 2. computer change the color of the bottom-right cell (except human's color)
- 3. Game ends if all cells are dominated by one of them
- 4. Goal: get more than half cells

Generalization!!

- It is natural to generalize ...
 - Game board: general connected graphs (color a vertex in a turn)



- The specified cell:
 - Fixed: you only color one specific cell
 - Free: you can <u>choose</u> and color any cell
- The other parameters can be...
 - graph classes
 - number k of colors (fixed/non-fixed)
 - (number of players)…今日は一人ゲームのみ考える



Known results & O free: 好きな頂点の色を変えられる

fixed: 色を変える頂点が決まっている k: 色の数

	fixed	fixed, constant k	free	free, constant k
general (treeでも)	NP-C	NP-C ($k \ge 3$) [ACJ+10] P ($k \le 2$)	NP-C	NP-C $(k \ge 3)$ [ACJ+10] P $(k \le 2)$ [LNT11]
grid(□△⊜)	NP-C	NP-C (<i>k</i> ≥3) [LNT11]	NP-C	NP-C $(k \ge 3)$ [LNT11]
path/cycle	$O(n^2)$ [LNT11]	$O(n^2)[LNT11]$	$O(n^3)$ [FNU+11]	$O(n^3)$ [FNU+11]
cocomparability	P[FW10]	P [FW10]	P [2]	P [2]
split	NP-C[FW10]	P [FW10]	NP-C	$O((k!)^2 + n)$
proper interval	P [1]	$O(8^k k^2 n^3)$	NP-C	$O(8^kk^2n^3)$
interval	P [1]	$O(8^k k^2 n^3)$	NP-C	$O(8^k k^2 n^3)$

[ACJ+10] D. Arthur, R. Clifford, M. Jalsenius, A. Montanaro, and B. Sach: The Complexity of Flood Filling Games, FUN 2010.

[LNT11] A. Lagoutte, M. Naual, and E. Thierry: Flooding ga k に関して fixed parameter tractable.

[FW10] R. Fleischer, G. J. Woeginger: An Algorithmic Analysis of the Honey-Bee Game, FUN 2010.

[FNU+11] H. Fukui, A. Nakanishi, R. Uehara, T. Uno, and Y. Uno:

The Complexity of Free Flood Filling Game, WAAC 2011.

準備

■ グラフ G=(V,E) が interval graph \Leftrightarrow Vの各要素vに対して区間Ivが対応して、 $\{u,v\} \in E$ である必要十分条件が $Iv \cap Iu \neq \Phi$ と表現できる(区間表現)

interval graph G が proper interval graph ⇔どの区間も互いに包含しないようなGの区間表現が存在

NP-completeness of ...

[Thm] The game is NP-complete in the case of (free/proper interval graph/色数無制限)

[Proof] Vertex Cover (VC)からの帰着

入力: G=(V,E), c

出力: G は大きさ c のVCをもつか?

頂点集合 S が $VC \Leftrightarrow$ Gの任意の辺 $e=\{u,v\}$ に 対して、 $e\cap S\neq \Phi$

与えられたインスタンスG=(V,E), cに対して以下の proper inter val graph G' を構成:

NP-completeness of · · ·

[Thm] The game is NP-complete in the case of (free/proper interval graph/色数無制限)

ポイント: 各辺区間対から両側 に向けて塗っていくの が効率がよい

[Proof] 与えられたインスタンスG=(V,E), cに対して以下の proper interval graph G'を構成:

- ① 等間隔に |E|+1 個の区間を並べて色bで塗る
- ② 各 e={u,v} に対して区間 Iu=Iv を並べる(順不同 区間Iuを色uで塗る
- ③ 各「辺区間対」からb区間までを長さmのパスでつなぐ

ポイント: 辺区間対からb までは独自の色 の並び かつ対からbまで 同じ並び

NP-completeness of ...

[Thm] The game is NP-complete in the case of (free/proper interval graph/色数無制限)

[Proof] 与えられたインスタンスG=(V,E), cに対して以下の proper interval graph G'を構成:

- 構成されたG'はproper interval graph
- 構成は多項式時間還元
- ★ |E|m+|VC|回色を塗れば、全部の色をbにでき、これが最適

G

NP-completeness of ...

[Thm] The game is NP-complete in the case of (free/proper interval graph/色数無制限)

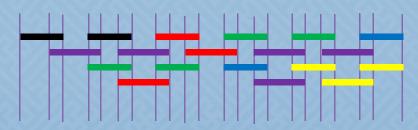
- ★ |E|m+|VC|回色を塗れば、全部の色をbにでき、これが最適
 - 1. まず辺ペアの一方の辺を選び、そこからbまでつなぐ $(m \times |E| \cup D)$
 - 2. 全体を張るbの長い区間を使って「塗り残し」に色を塗る
 - 各辺{u,v}ごとに一方が塗り残しになる
 - この「塗り残し」はVCを使うと最小化できる

Poly-time alg. on prop. int. graph

[Thm] The game is poly-time solvable in the case of (free/proper interval graph/色数 $\leq k$)

[Proof] Based on Dynamic Programming.

- ① 区間表現を構築(prop. int. graph では一意的に決まる)
- ② 区間を「同じ色集合を持つ部分区間」のパスとみなす (各部分区間は 2^k-1 色のどれかで塗られている)



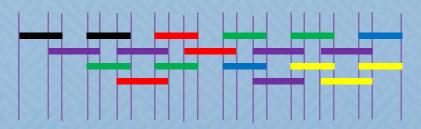
★単純なパスのアルゴリズムは使えない! ある区間の色を変えると、隣接する部分区間だけでなく、 さらに遠くにも影響がある。

Poly-time alg. on prop. int. graph

[Thm] The game is poly-time solvable in the case of (free/proper interval graph/色数 $\leq k$)

[Proof] Based on Dynamic Programming.

- ① 区間表現を構築(prop. int. graph では一意的に決まる)
- ② 区間を「同じ色集合を持つ部分区間(セル)」のパスとみなす (各部分区間は 2^k-1 色のどれかで塗られている)



単純なパスのアルゴリズム: 管理するテーブルは *T*[*i,j,c*]: 区間[*i..j*]を色*c*で 塗るための最小手数

管理するテーブル:

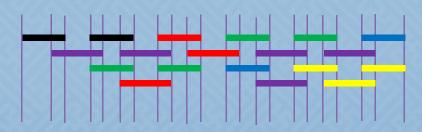
 $T[i,j,c,\underline{S}]$: 区間[i,j]のすべてのセルに色cが含まれるまでの最小手数ただし塗り残しがあってもよく、塗り残し色の集合 $\subseteq S$

Poly-time alg. on prop. int. graph

[Thm] The game is poly-time solvable in the case of (free/proper interval graph/色数 $\leq k$)

[Proof] Based on Dynamic Programming.

- ① 区間表現を構築(prop. int. graph では一意的に決まる)
- ② 区間を「同じ色集合を持つ部分区間(セル)」のパスとみなす $(セルの数をPとするとP \le 2n)$



T[1,P,c,S]+|S|の最小値を求めればよい!! ... $O(8^kk^2n^3)$

管理するテーブル:

T[i,j,c,S]: 区間[i,j]のすべてのセルに色cが含まれるまでの最小手数ただし塗り残りがあってもよく、塗り残し色の集合 $\subseteq S$

一般の区間グラフへの拡張

- 区間表現が一意的には決まらない
- MPQ木というデータ構造を使うと、同様にできる
- 計算量は変わらないが、アルゴリズムは複雑

残された課題

- 区間グラフのアルゴリズムを単純化
- cocomparability graph は多項式時間でできるけど…. tant k

general (treeでも)	NP-C	NP-C $(k \ge 3)$ P $(k \le 2)$	NP-C	NP-C $(k \ge 3)$ P $(k \le 2)$
grid(□△○)	NP-C	NP-C (<i>k</i> ≥3)	NP-C	NP-C (<i>k</i> ≥3)
path/cycle	$O(n^2)$	$O(n^2)$	$O(n^3)$	$O(n^3)$
cocomparability	Р	Р	P(?)	P(?)
split	NP-C	Р	NP-C	$O((k!)^2+n)$
proper interval	Р	$O(8^k k^2 n^3)$	NP-C	$O(8^k k^2 n^3)$
interval	Р	$O(8^k k^2 n^3)$	NP-C	$O(8^k k^2 n^3)$