色数とおじゃまぷよを制限した一般化ぷよぷよの 連鎖数判定問題のNP完全性

大阪電気通信大学大学院 工学研究科 情報工学専攻 木場 裕矢 宗重 成央 上嶋 章宏

2011/3/10

目次

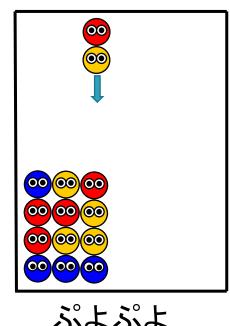
- ●研究背景•目的
- ・一般化ぷよぷよ
 - ●連鎖数判定問題
- 3-PATITIONからの還元
 - ●おじゃまぷよを使用した3色での本問題
 - ●おじゃまぷよを使用せず5色での本問題
- ●まとめと今後の課題

研究背景•目的

NP完全

一般化ぷよぷよの連鎖数判定問題 [松金, 武永, 2005]

色数4色以上 おじゃまぷよ使用



ぷよぷよ

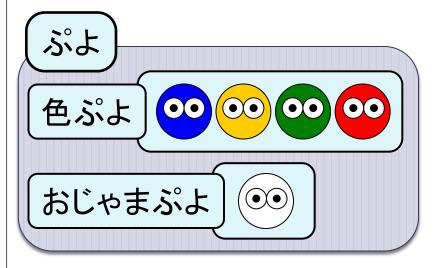
- 色数を減らすとどうなるか?
- おじゃまぷよを使用しないとどうなるか?

研究背景•目的

一般化ぷよぷよの連鎖数判定問題において

	1色	2色	3色	4色	5色	6色	7色	
おじゃま ぷよ 有	?	?	?	NP 完全	[松金,	武永, 20	005]	
おじゃま ぷよ 無	P	?	?	?	?			

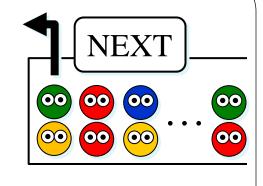
を新たにNP完全と証明した

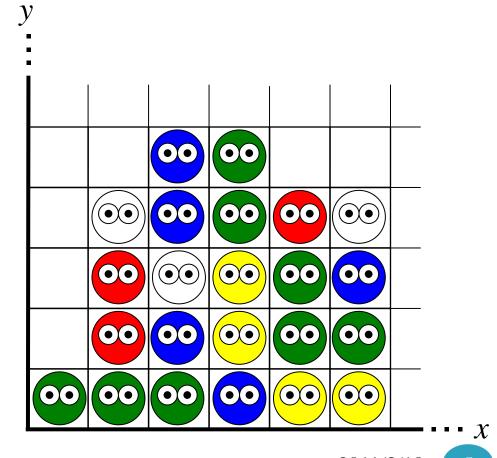


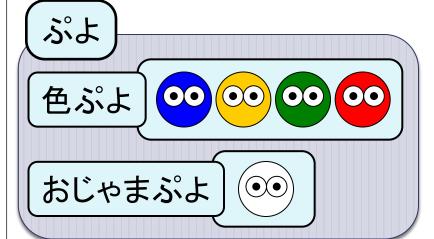
盤面の縦横の長さは無制限

初期盤面が存在

出現順が存在



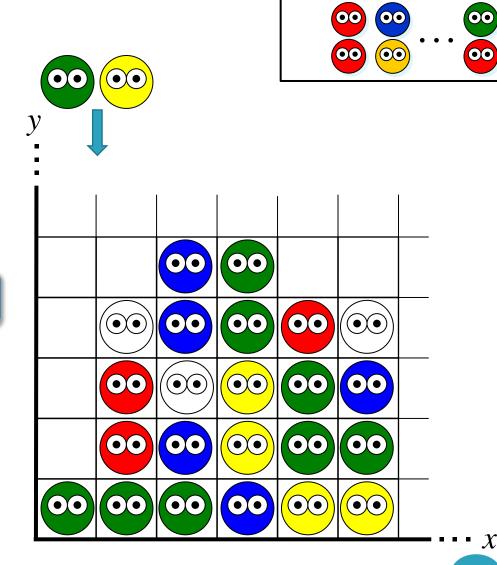




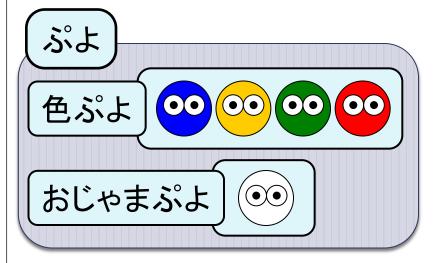
x軸方向へ移動

90°回転

落下

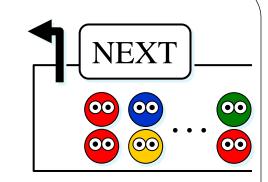


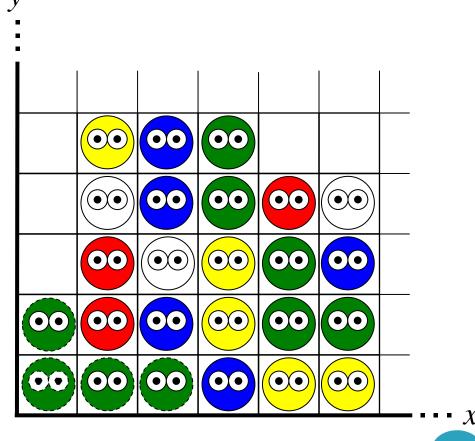
NEXT

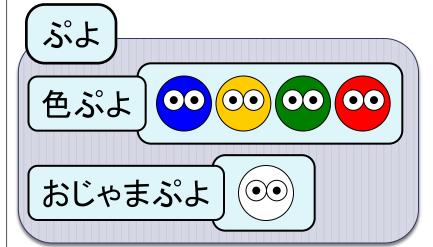


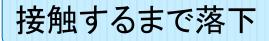
接触するまで落下

同色が4個以上の隣接で消滅



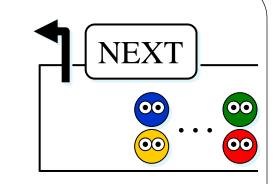


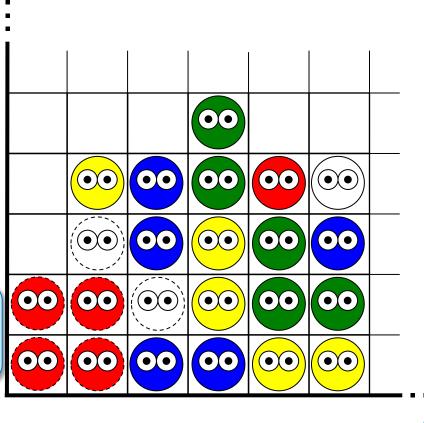


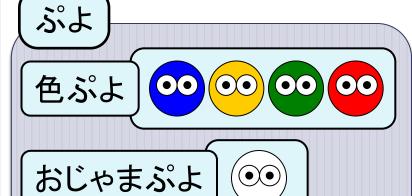


同色が4個以上の隣接で消滅

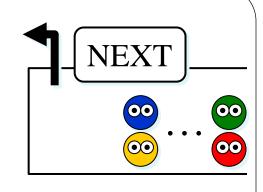
おじゃまぷよは色ぷよ消滅時に 隣接しているなら消滅







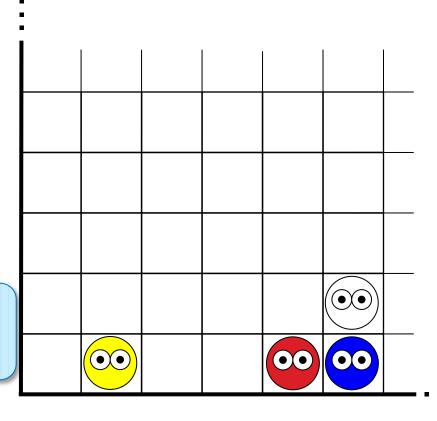
3連鎖



接触するまで落下

同色が4個以上の隣接で消滅

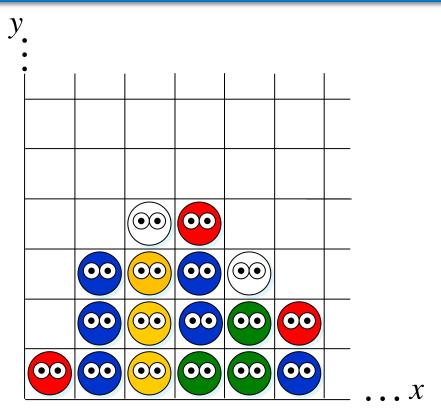
おじゃまぷよは色ぷよ消滅時に 隣接しているなら消滅



連鎖数判定問題

入力: 初期盤面 B, ピース列 P, 正整数 k,

質問: k連鎖が可能か?



初期盤面B



k = 6

本問題はNPに属する

既知のNP完全問題

3-PARTITION

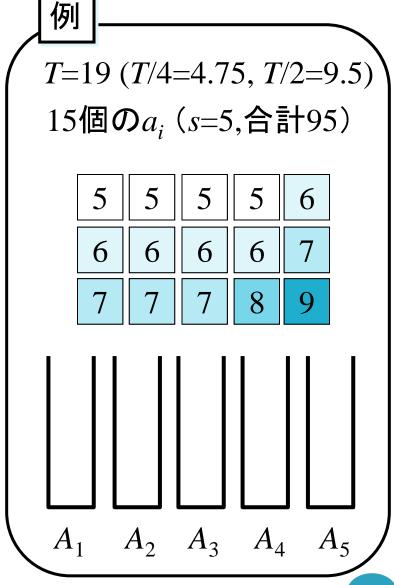
入力:

正整数T, a_1 , a_2 , ..., a_{3s} ($T/4 < a_i < T/2$, a_i の総計はsT),

質問:

各 a_i をs個の集合Aに3つずつ振り分けて、全A中の和をTにできるか?

[M.R.Garey *et al*, 1979]

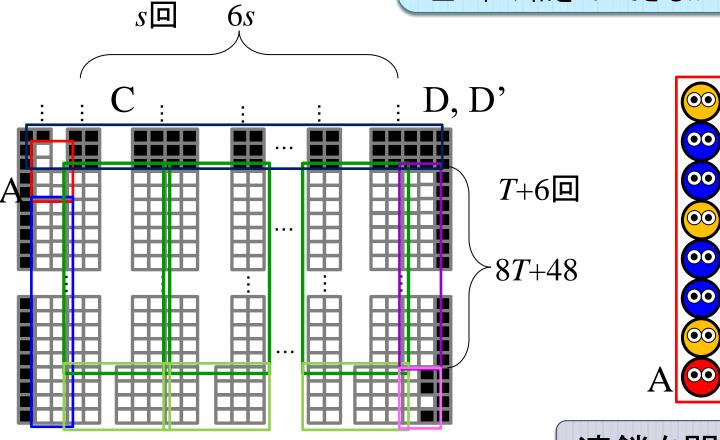


おじゃまぷよを使用した3色での一般化ぷよぷよの連鎖数判定問題

	1色	2色	3色	4色	5色	6色	7色	
おじゃま ぷよ 有	?	?	?	NP 完全	[松金,	武永, 20	005]	
おじゃま ぷよ 無	P	?	?	?	?	?	?	?

3-PARTITION

各 a_i をs個の集合Aに3つずつ振り分けて、 全A中の和をTにできるか?

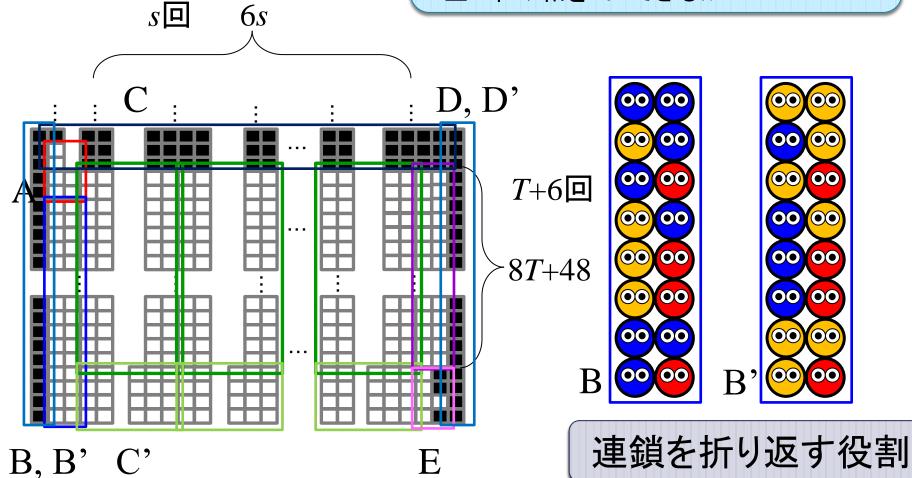


連鎖を開始する役割

B, B' C'

3-PARTITION

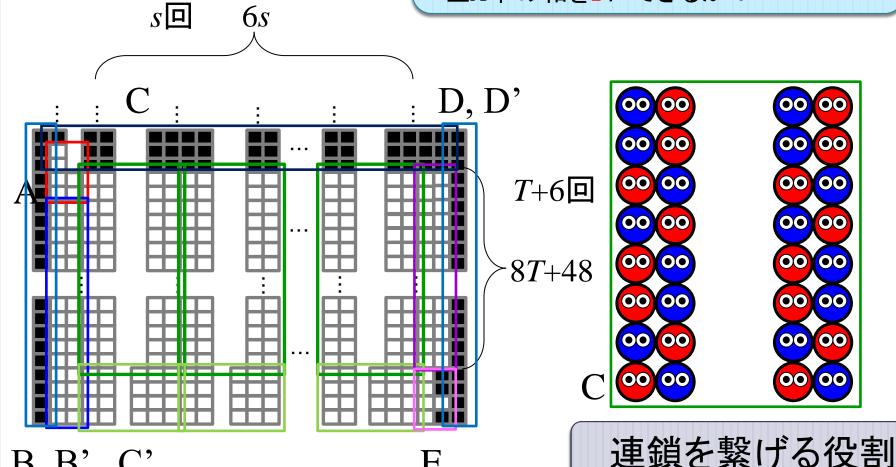
各 a_i をs個の集合Aに3つずつ振り分けて, 全A中の和をTにできるか?



組合せゲーム・パズルミニプロジェクト

3-PARTITION

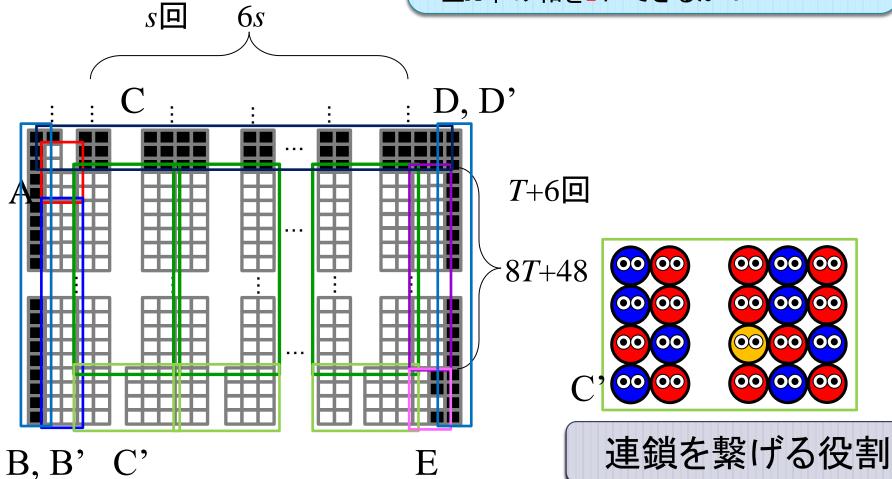
各 a_i をs個の集合Aに3つずつ振り分けて, 全A中の和をTにできるか?



B, B' C'

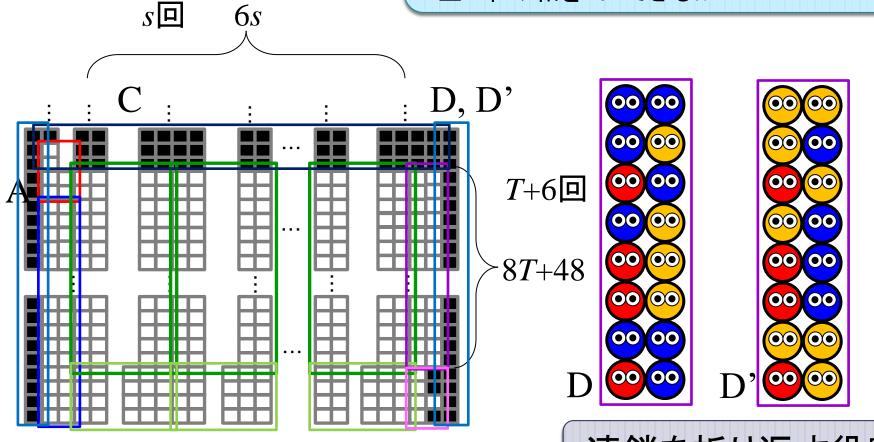
3-PARTITION

各 a_i をs個の集合Aに3つずつ振り分けて, 全A中の和をTにできるか?



3-PARTITION

各 a_i をs個の集合Aに3つずつ振り分けて, 全A中の和をTにできるか?

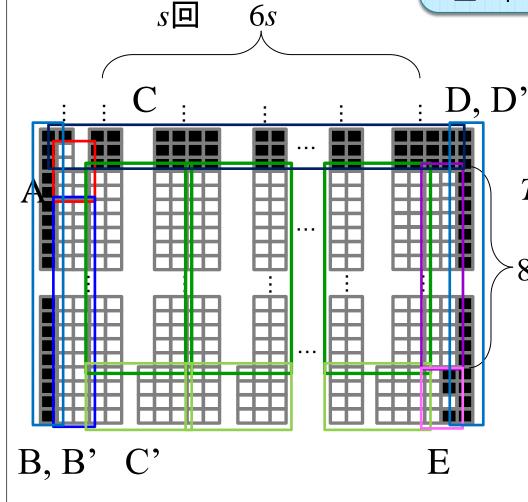


連鎖を折り返す役割

B, B' C'

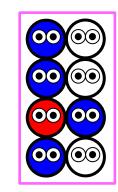
3-PARTITION

各 a_i をs個の集合Aに3つずつ振り分けて、 全A中の和をTにできるか?



T+6 \Box

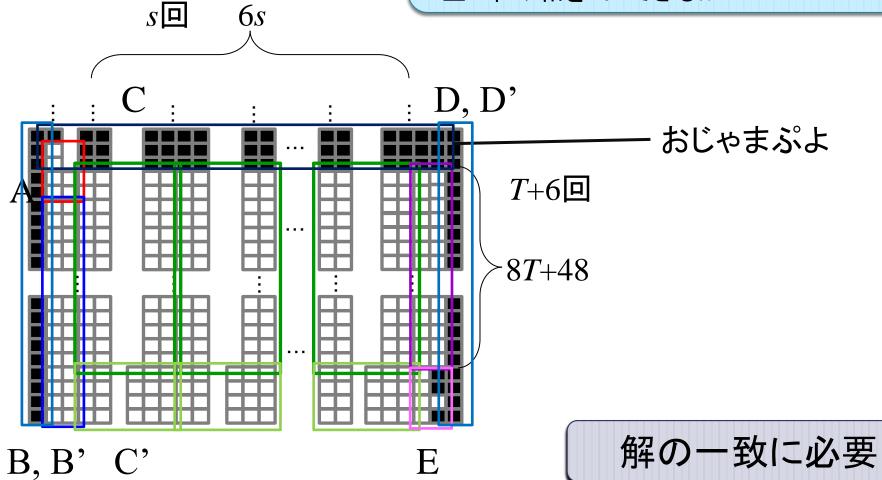
-8*T*+48

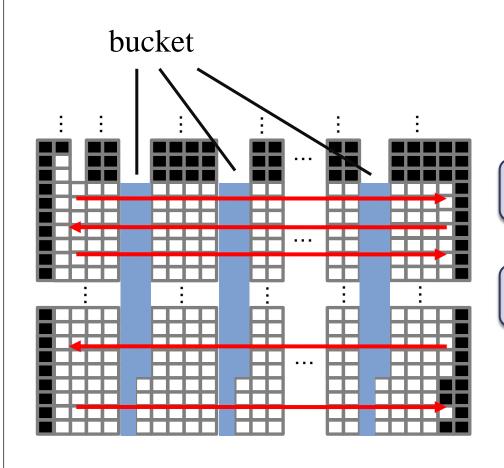


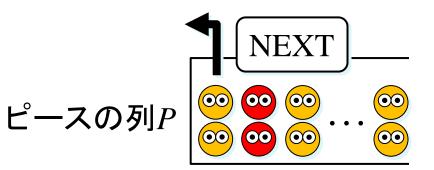
連鎖を終了する役割

3-PARTITION

各 a_i をs個の集合Aに3つずつ振り分けて, 全A中の和をTにできるか?

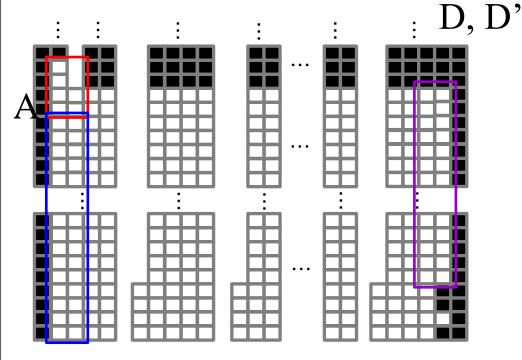




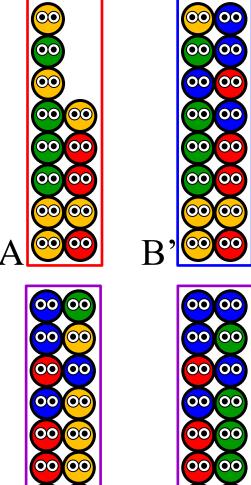


bucketにピースを埋める

全bucketを満たすとk連鎖



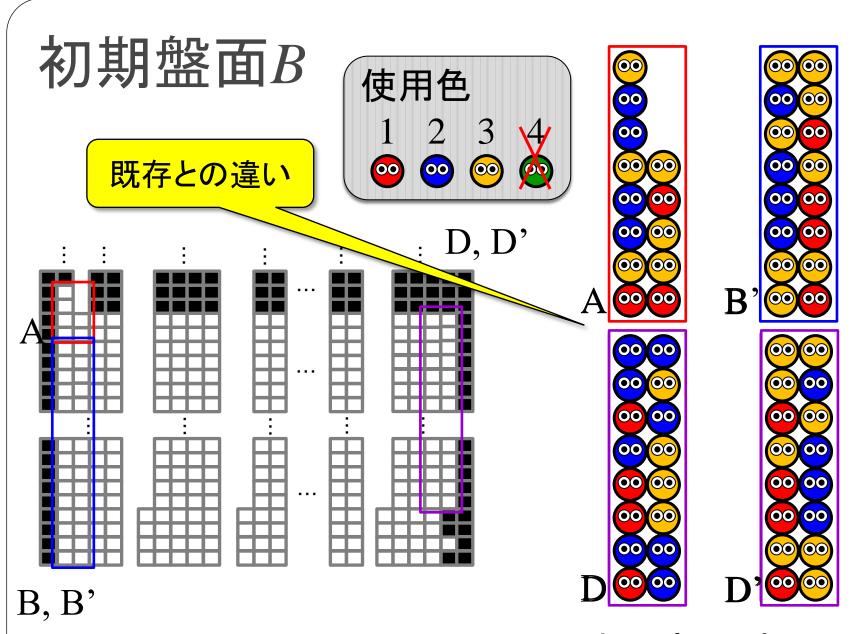
B, B'



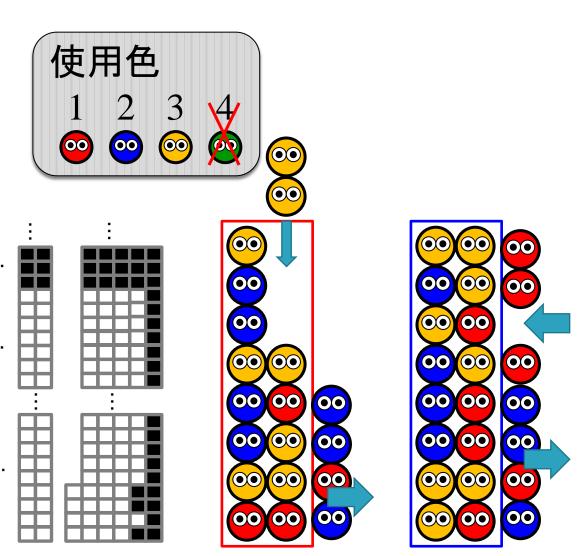
既存研究のパーツ 2011/3/10 21

00 00

00 00



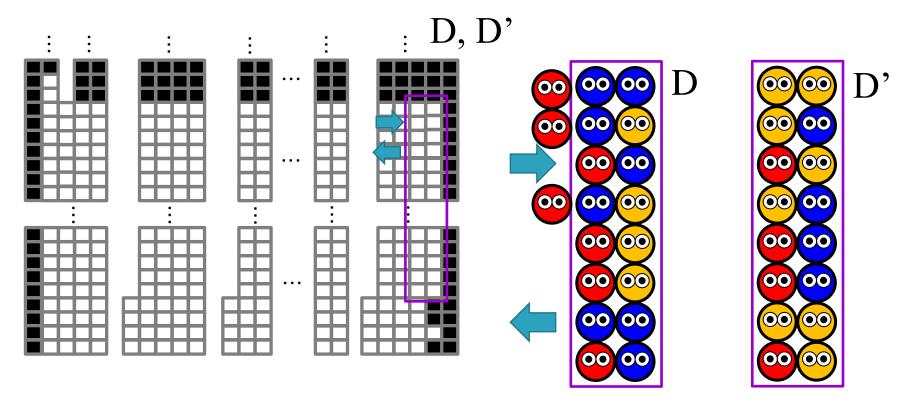
本研究のパーツ2011/3/10 22



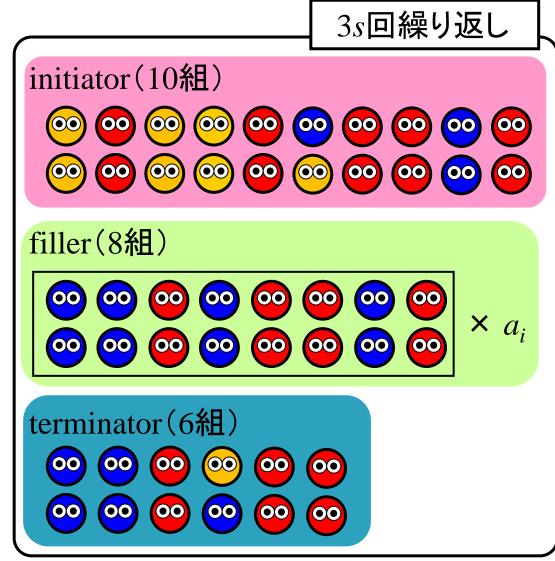
B, B'

A

B'



ピースの列 P



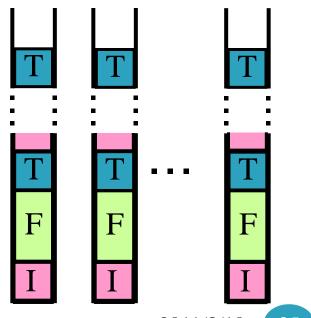
3-PARTITION

s:集合の数

3s:要素の数

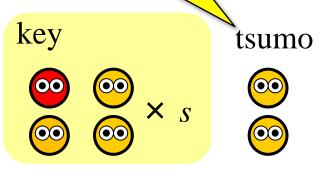
a_i:要素の値

bucket (s個)

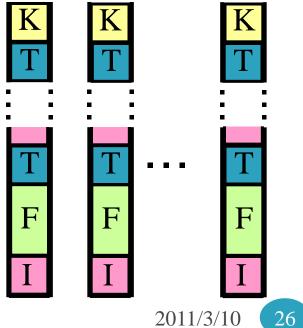


ピースの列 P

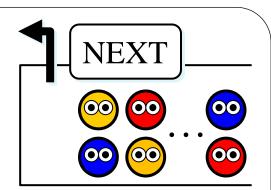
既存との違い



bucket (s個)



正整数kと正当でない連鎖



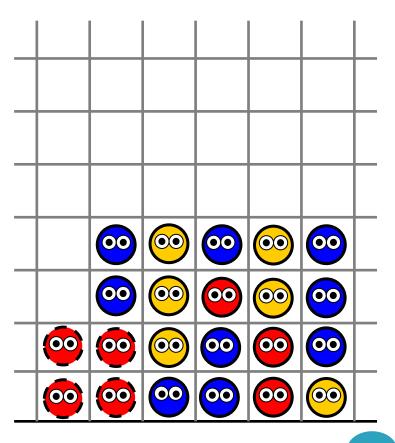
4



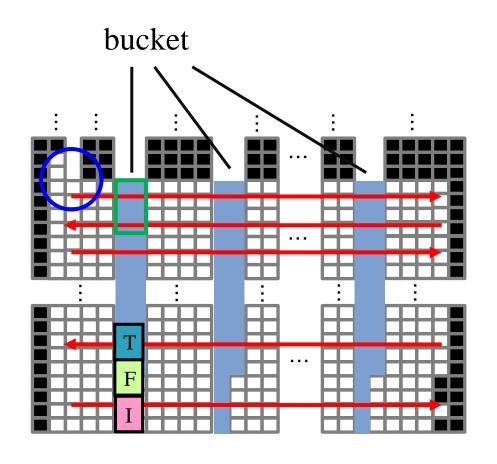
起りうる最大連鎖数

正当でない連鎖

- ×ピース終了前にぷよを消す
- × 5個以上の同時消し
- × 連鎖が途中で止まる



証明:本問題 → 3PARTITION



証明の手順

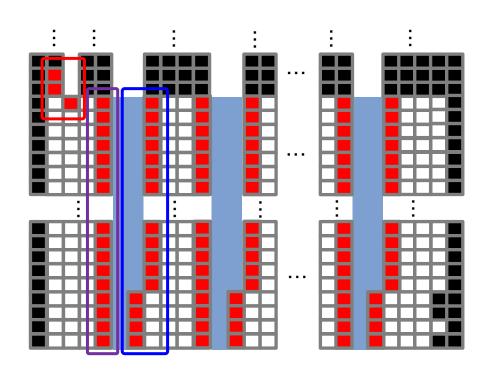
開始点が定まる

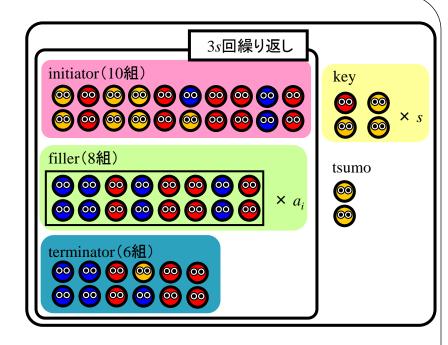
流れが定まる

配置が定まる

埋め方が定まる

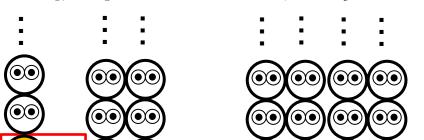
開始点

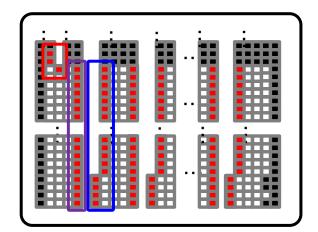


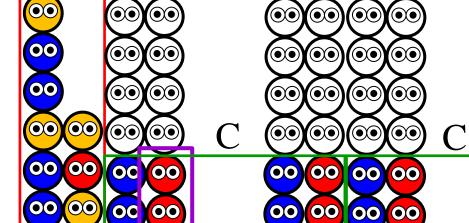


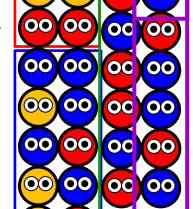
初期盤面で最初に消えるぷよを考える

- □□□の候補がある
- □のみ正当に消せる



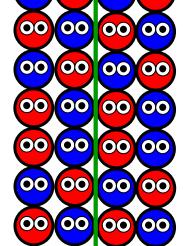


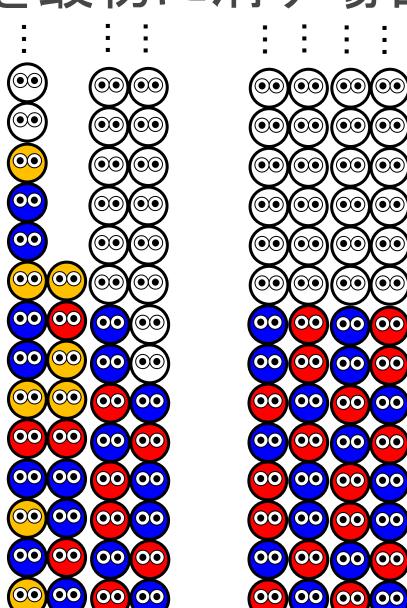


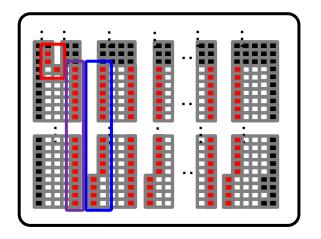


00

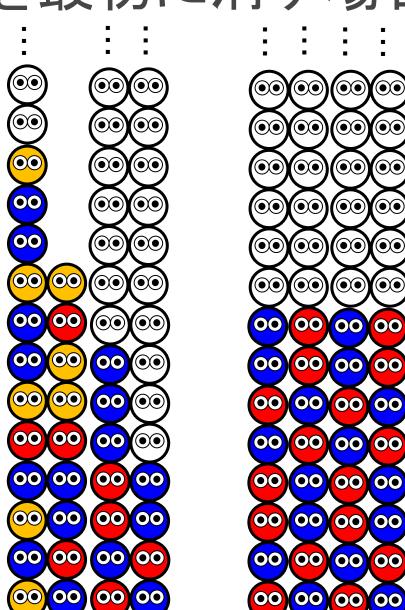
OC YOO

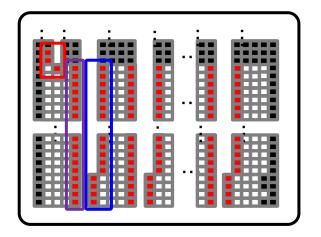




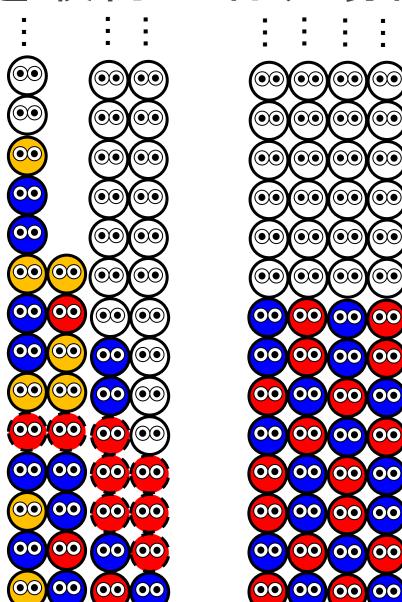


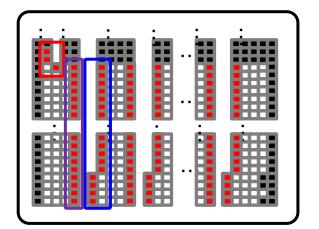
おじゃまぷよが落ちて正 当な連鎖にならない

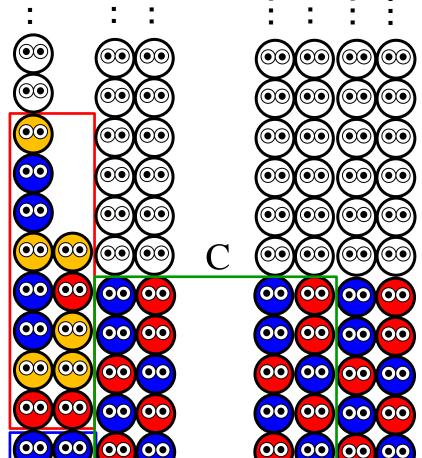




おじゃまぷよが落ちて正 当な連鎖にならない







00 00 00

00 00 00 00

00 00 00

00

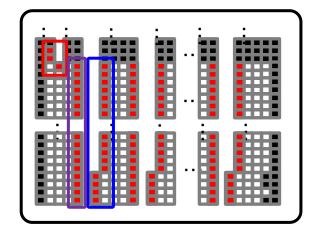
00 00

00 (00)

00 00

00 00

00 00

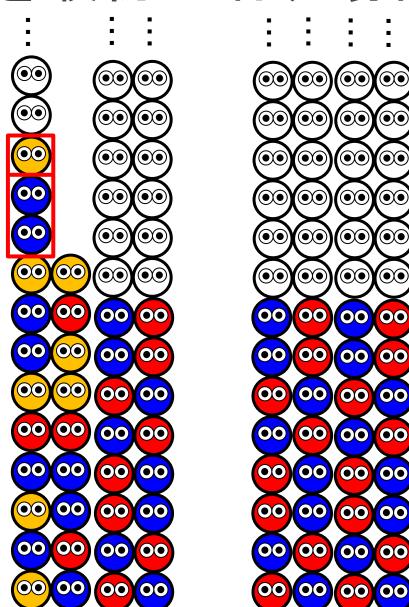


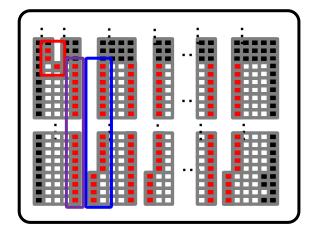
全ての色ぷよでk連鎖

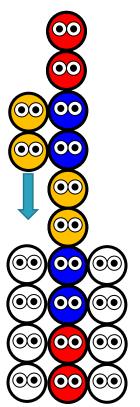
□の後に□を消さなければならない

 \odot

 \odot





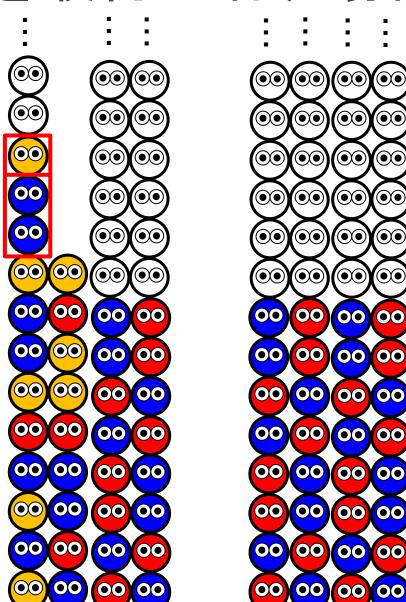


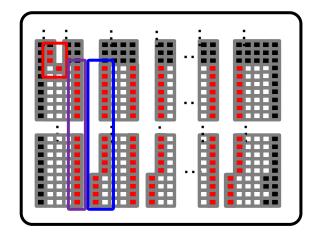
一を最初に消す場合

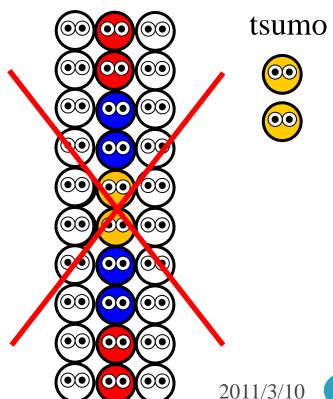
 \odot

 \odot

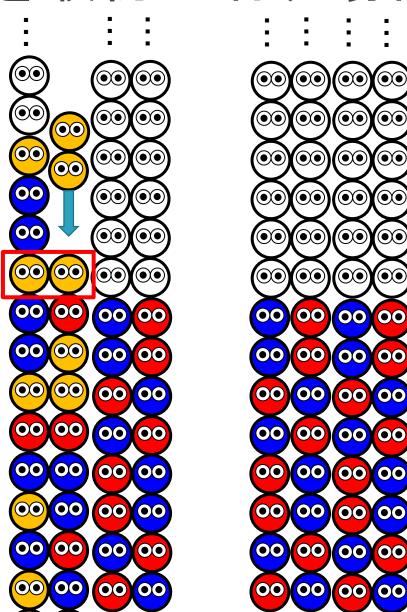
 \odot

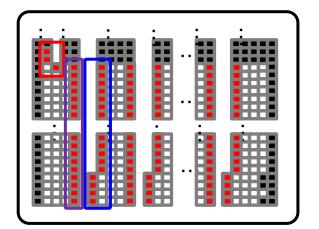




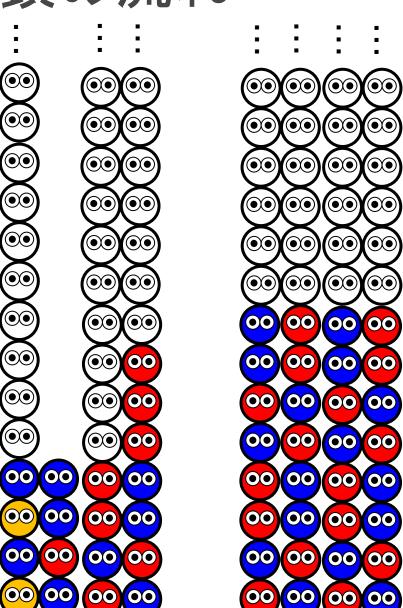


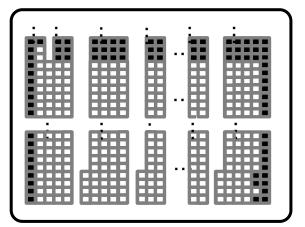
□を最初に消す場合





連鎖の流れ





証明の手順

開始点が定まる

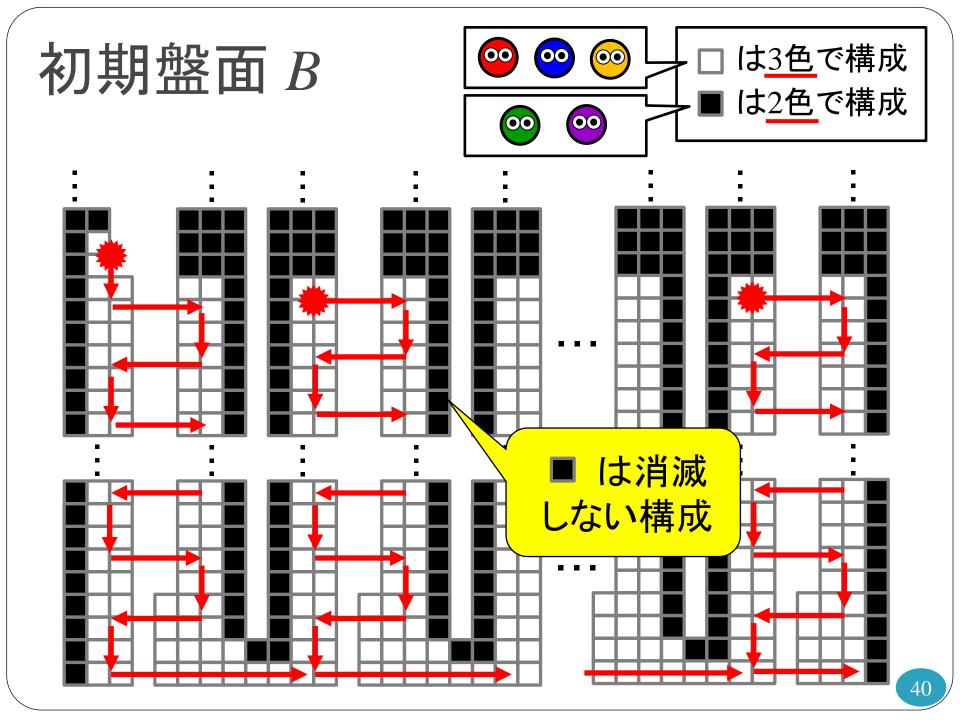
流れが定まる

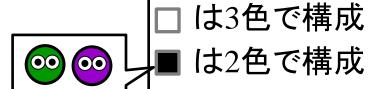
配置が定まる

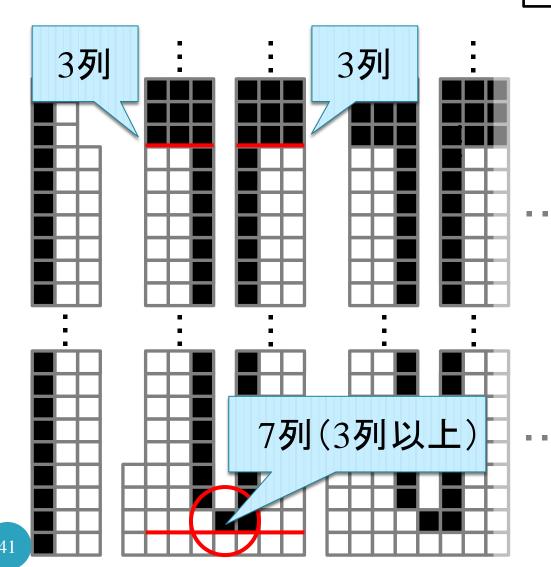
埋め方が定まる

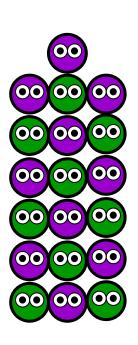
おじゃまぷよを使用しない5色での一般化ぷよぷよの連鎖数判定問題

	1色	2色	3色	4色	5色	6色	7色	
おじゃま ぷよ 有	?	?	NP 完全	NP 完全	[松金,	武永, 20	005]	
おじゃま ぷよ 無	P	?	?	?	?	?	?	?

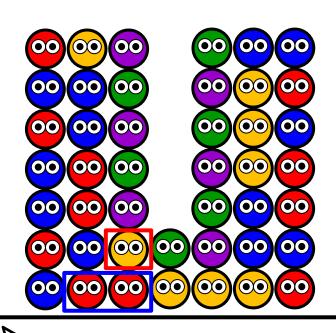


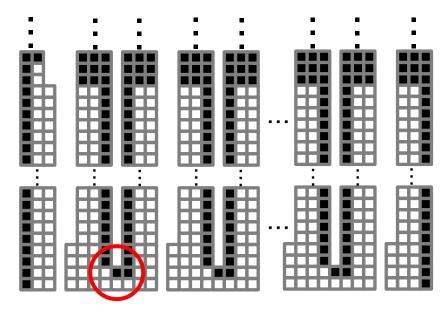


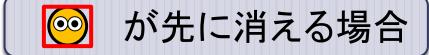


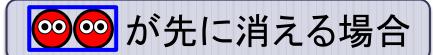


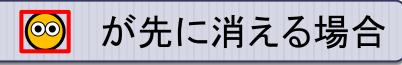
3列は絶対消えない

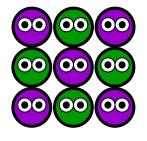


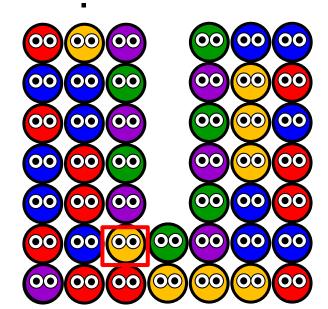


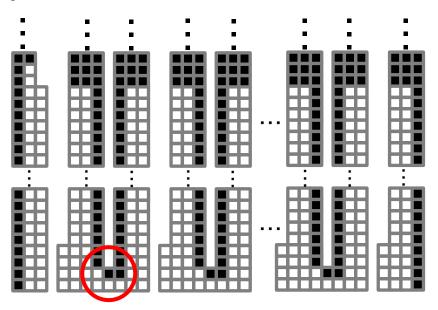






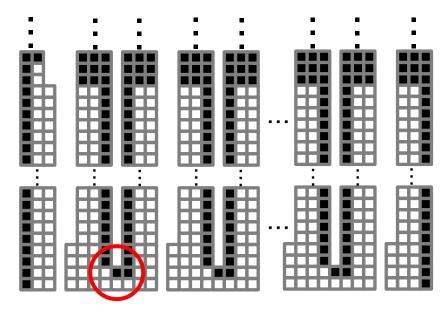


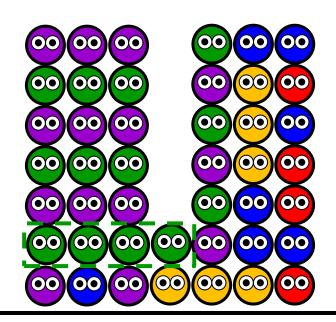




2列目で緑が揃う可能性

が先に消える場合

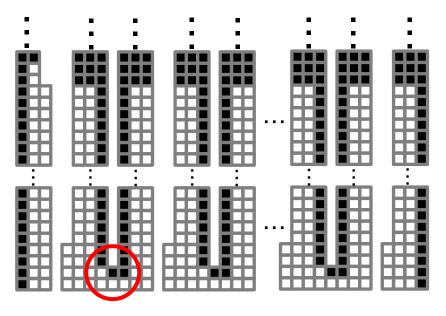


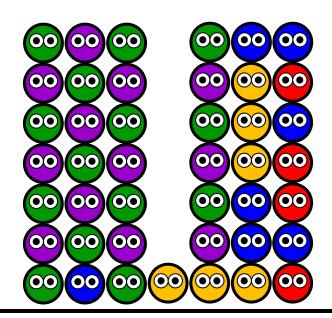


2列目で緑が揃う可能性

緑が揃ったと仮定

が先に消える場合

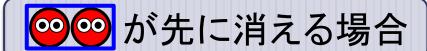


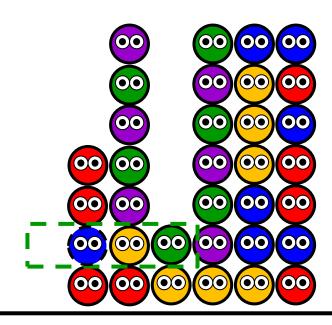


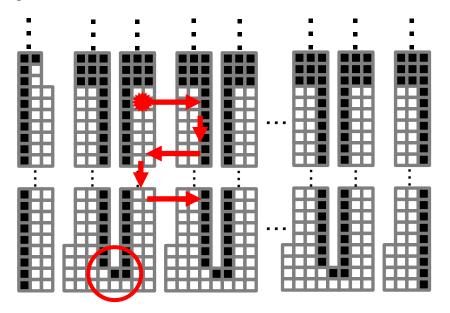
2列目で緑が揃う可能性

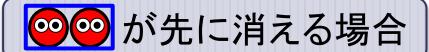
緑が揃ったと仮定

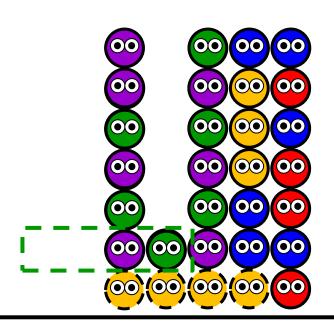
連鎖は止まる

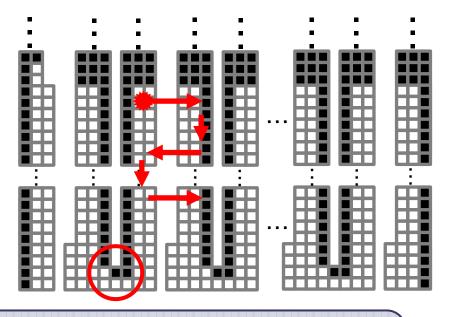




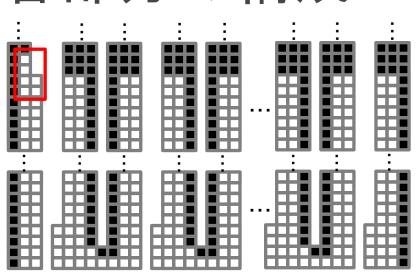




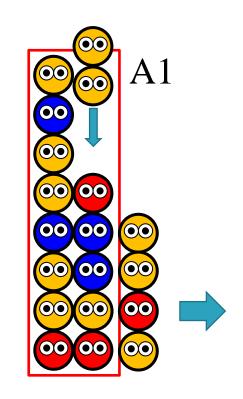


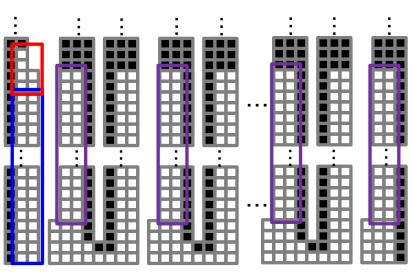


緑と紫が交互になるので 正当な連鎖

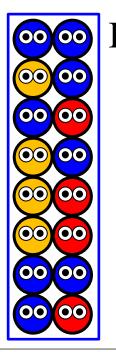


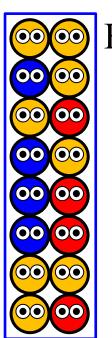
3色おじゃま有りとの違い

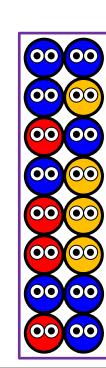


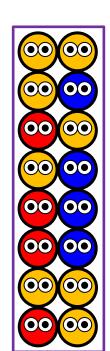


3色おじゃま有りとの違い



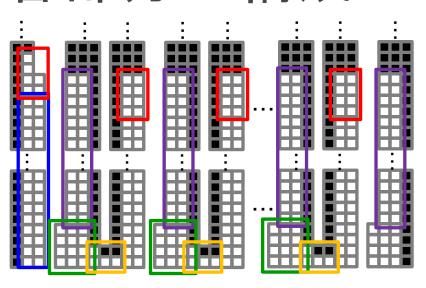




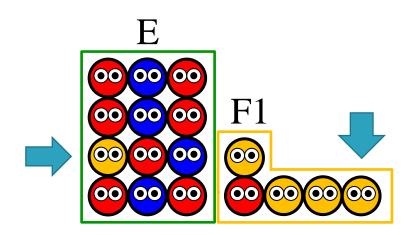


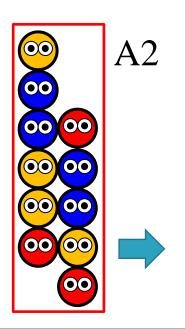
D1'

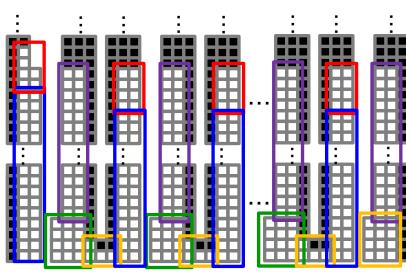
2011/3/10

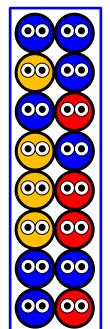


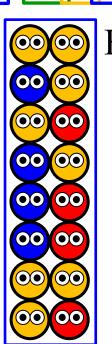
3色おじゃま有りとの違い





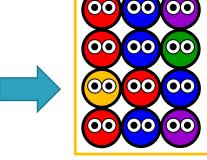


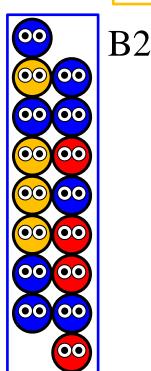


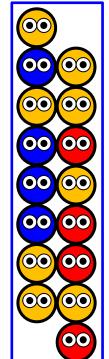


3色おじゃま有りとの違い

F'

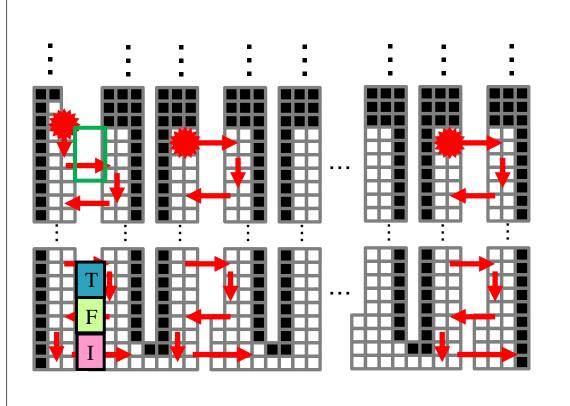






B2'

証明:本問題 → 3PARTITION



証明の手順

開始点が定まる

流れが定まる

配置が定まる

埋め方が定まる

まとめと今後の課題

	1色	2色	3色	4色	5色	6色	7色	• • •
おじゃま ぷよ 有	?	2	NP	NP				
ぶよ有	•	?	完全	完全	[松金,	武永, 2	2005]	
おじゃま ぷよ 無	P	?	?	?	NP 完全	NP 完全	NP 完全	NP 完全

- ●おじゃまぷよを使用した場合
 - ◆色数の制限を2色以下にする
- ●おじゃまぷよを使用しない場合
 - ◆色数の制限を4色以下にする