Kaboozle is NP-complete, even in a Strip Form

Tetsuo Asano @ JAIST Erik D. Demaine @ MIT Martin L. Demaine @ MIT Ryuhei Uehara @ JAIST <u>Short History:</u> 2010/1/9: At Boston Museum... we met Kaboozle! 2010/2/21 ...accepted by 5th International Conference of FUN with Algorithms (FUN 2010)! <u>Side Story:</u>

"Stretch minimization problem on a strip paper", accepted by 5th International Conference on Origami in Science, Mathematics, and Education (5OSME)

Kaboozle is NP-complete, even in a Strip Form

Tetsuo Asano @ JAIST Erik D. Demaine @ MIT Martin L. Demaine @ MIT

Ryuhei Uehara @ JAIST

What's Kaboozle?

- "Labyrinth Puzzle"
 - consists of 4 (square) cards
 - pile them and connect the color path
 - its generalized version seems to be NP-hard.
- It's Difficulty comes from…
 - 1. rotation
 - 2. flipping
 - 3. ordering of the cards
- Our interest is…
 - the boundary of the difficulty of restricted generalized Kaboozle.

what is the essential of the difficulty?

Related to "Silhouette Puzzle"?

the boundary of the difficulty of restricted generalized Kaboozle.

what is the essential of the difficulty?

Very restricted Kaboozle…

- Join them into a strip form like…
 - rotation/flipping are inhibited
 - ordering of the cards are very restricted
 - it seems that "DP from one side works!"…?

Even in this very restricted form,

Theorem: Generalized Kaboozle is still NP-complete even in <u>a strip form</u> with <u>specified mountain/valley pattern.</u>

Background about Origami problem

- Any given "mountain-valley pattern" of length n,
 - how many folding ways consistent to the pattern?
 - Uehara showed that it is exponential on average!!
- How many folding ways of length n?
 - According to "<u>The On-Line Encyclopedia of Integer Sequences</u>,"
 "The number of folding ways of a strip of *n* labeled stamps" is obtained up to *n*=28 by enumeration!
 - These values seem to fit to $\Theta(3.3^n)$
 - Uehara recently obtained the upper/lower bounds of this value; $\Omega(3.07^n)$ and $O(4^n)$,

which imply that the average value for a random pattern is $\Omega(1.53^n)$ and $O(2^n)$.

Results from the Origami problem

Observation:

For a given mountain-valley pattern, the way of folding is unique if and only if the pattern is pleats, that is, "MVMVMV...".

Proof:

 (\leftarrow) Trivial.

 (\rightarrow) If the pattern contains "MM", we have two choices to pile the paper. Hence it contains neither "MM" nor "VV", which complete the proof.

Results from the Origami problem

- Useful pattern: "shuffle pattern" of length n (n=6):
 MVMVMVMVMVMVMVMVMVMVMVMVM
- Property:

A shuffle pattern of length n has (exactly)

Theorem: Generalized Kaboozle is still NP-complete even in a strip form with specified mountain/valley pattern.

 Proof: poly-time reduction from the following NP-complete problem [GJ79]:

1-in-3 3SAT:

Input: $F(x_1, x_2, ..., x_n) = c_1 \wedge c_2 \wedge ... \wedge c_m$, where $c_i = (l_i^1 \vee l_i^2 \vee l_i^3), \ l_i^j = x_k$ or $l_i^j = \neg x_k$

Question: determine if F has an assignment s.t. each

clause has exactly one true literal.

Ex: $F(x_1, x_2, x_3, x_4) = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4)$ is yes instance with $x_1=1, x_2=0, x_3=0, x_4=1$

Lemma: Generalized Kaboozle is still NP-complete

Proof: From the formula, we construct the following Kaboozle cards;

Ex: $F(x_1, x_2, x_3, x_4) = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4)$

1.

 $\neg \chi_3$

the unique path

holes for each clause

F() is yes instance with $x_1=1, x_2=0, x_3=0, x_4=1,$ but fails with $x_1=0, x_2=1, x_3=0, x_4=1$

 $\neg x_2$

Lemma: Generalized Kaboozle is still NP-complete

- Proof: From the formula, we construct the following Kaboozle cards (in polynomial time);
 - 1. top card should be the top (otherwise two endpoints disappear)
 - 2. for variable cards…
 - 1. the cards for $\{x_i, \neg x_i\}$ and $\{x_j, \neg x_j\}$ are independent
 - 2. x_i covers the paths on $\neg x_i$ and vice versa
 - 3. The set of Kaboozle cards has a solution if and only if the 3SAT formula satisfies the condition.

Theorem: Generalized Kaboozle is still NP-complete even in a strip form with specified mountain/valley pattern.

• Proof: poly-time reduction from 1-in-3 3SAT: We join top cards, variable cards, and 2n blank cards in a strip form with the shuffle pattern: x_4 x_3 x_2 x_1 top $\neg x_1$ $\neg x_2$ $\neg x_3$ $\neg x_4$ Det 000 ext as x_1 x_2 x_1 top $\neg x_1$ $\neg x_2$ $\neg x_3$ $\neg x_4$ \therefore x_2 x_1 x_2 x_1 x_2 x_3 x_4

by the lemma and the property of the shuffle pattern, Theorem follows.

Remarks

- "Generalized Kaboozle" is NP-complete even if they are joined in a strip form with/without mountain-valley pattern.
 - So "determine the ordering" is hard enough.
- What happen if ordering of the cards are fixed and
 - 1. (only) rotation is allowed and/or
 - 2. (only) flipping is allowed?
 - ···both are NP-complete.
- My personal interest is ···
 - For any given mountain-valley pattern, find the "best" folded state, where "best" means that the maximum number of papers between each pair of papers hinged at a crease is minimized.

Appendix

How many folding ways of length n?

- Uehara recently obtained the upper/lower bounds of this value; $\Omega(3.07^n)$ and $O(4^n)$.
 - the upper bound $O(4^n)$ comes from the Catalan number.

[**Proof**] If the paper of length *n* is folded, the endpoints are nested.

Appendix

How many folding ways of length n? [Thm] Its lower bound is Ω(3.07ⁿ).

[**Proof**] We consider of folding of the last *k* unit papers;

We let

- f(n): the number of folding ways of length n
- g(k): the number of folding ways of length k s.t. the leftmost endpoint is not covered Then, we have $f(n) \ge (g(k))^{\frac{n}{k-1}} = (g(k)^{1/(k-1)})^n$

Appendix

How many folding ways of length n?
 [Thm] Its lower bound is Ω(3.07ⁿ).

[Proof] We consider of folding of the last *k* unit papers; g(k): the number of folding ways of length *k* s.t. the leftmost endpoint is not covered is equal to "the number of ways a semi-infinite directed curve can cross a straight line *k* times", A000682 in "The On-Line Encyclopedia of Integer Sequences". From that site, we have g(44)=830776205506531894760. Thus, by $f(n) \ge (g(k))^{\frac{n}{k-1}} = (g(k)^{1/(k-1)})^n$

we have the lower bound.

also obtained by enumeration